pH mediated simple synthesis of AgVO3 nanomaterials for degradation of industrial waste

光催化 材料科学 纳米材料 扫描电子显微镜 带隙 降级(电信) 化学工程 可见光谱 能量色散X射线光谱学 光谱学 纳米技术 核化学 催化作用 复合材料 光电子学 化学 有机化学 计算机科学 量子力学 电信 物理 工程类
作者
Muhammad Mansha,Tahir Iqbal,Muhammad Umar Farooq,N.R. Khalid,Sumera Afsheen,Muhammad Sajjad,Nabil Al‐Zaqri,Ismail Warad
出处
期刊:Optik [Elsevier]
卷期号:290: 171285-171285
标识
DOI:10.1016/j.ijleo.2023.171285
摘要

This research work reports the synthesis of Silver Vanadium oxide (AgVO3) by varying the pH (6%, 7%, 8%, 9% and 10%) using simple hydrothermal technique. The bandgap energy of AgVO3 is tuned to ∼ 2.21 eV while controlling the morphology in the form of nano-rods and belts shape results into α-crystalline phase. It is worth mentioning that desirous bandgap corresponds to the visible spectrum of the solar light being abundantly available and finds many applications in real life. The synthesized samples were characterized by Ultra-Violet/Visible (UV/Vis) spectroscopy, scanning electron microscope (SEM), X-ray diffraction (XRD), and energy-dispersive X-ray (EDX) spectroscopy. Investigation of characterizations reveals that diameter of the nano-rods and belts are in the range from 50 to 80 nm which is primarily dependent on the value of the pH. The photocatalytic activity of synthesized nanomaterials has been performed by degradation of real industrial pollutant obtained from Leather Field Industry. The prepared samples successfully degraded the industrial pollutant in 02 h under visible light irradiation having minimum degradation efficiency (56%) of AgVO3 for pH-06 (sample prepared with) and maximum efficiency (78%) for the sample (prepared by) pH-09. This maximum photocatalytic efficiency attributes to a reduced recombination of photo-generated charge carriers. A very small decrease in degradation efficiency of photocatalyst for industrial waste during five successive cycles demonstrates confirming the reusability, good recyclability, of catalyst. As a result, AgVO3 can be employed as a possible photocatalyst for the disintegration of industrial waste, which is direly needed at this time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
逐风给逐风的求助进行了留言
1秒前
科研通AI5应助灌饼采纳,获得30
1秒前
Owen应助Zzzzzzzzzzz采纳,获得10
2秒前
3秒前
4秒前
巫马秋寒应助笑点低可乐采纳,获得10
4秒前
xuex1完成签到,获得积分10
4秒前
情怀应助阳光的雁山采纳,获得10
6秒前
斯文败类应助jy采纳,获得10
6秒前
6秒前
日月轮回发布了新的文献求助10
7秒前
36456657应助木香采纳,获得10
8秒前
无花果应助ns采纳,获得30
8秒前
刘铭晨完成签到,获得积分10
8秒前
9秒前
YY发布了新的文献求助10
9秒前
Rrr发布了新的文献求助10
10秒前
学术蠕虫发布了新的文献求助10
10秒前
10秒前
miumiuka完成签到,获得积分10
11秒前
个性的薯片应助lyt采纳,获得20
13秒前
sweetbearm应助寒涛先生采纳,获得10
14秒前
wanci应助YY采纳,获得10
15秒前
15秒前
16秒前
16秒前
17秒前
HC完成签到 ,获得积分10
18秒前
姚姚的赵赵完成签到,获得积分10
18秒前
JamesPei应助大豪子采纳,获得30
19秒前
jy发布了新的文献求助10
19秒前
19秒前
陆靖易发布了新的文献求助10
19秒前
LQW完成签到,获得积分20
20秒前
21秒前
plant完成签到,获得积分10
21秒前
lyt完成签到,获得积分10
21秒前
22秒前
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808