Optimization of mechanical properties of multiscale hybrid polymer nanocomposites: A combination of experimental and machine learning techniques

材料科学 极限抗拉强度 纳米复合材料 铸造 复合材料 均方误差 循环神经网络 碳纳米管 随机森林 延展性(地球科学) 算法 计算机科学 人工神经网络 机器学习 数学 蠕动 统计
作者
Elizabeth Champa-Bujaico,Ana M. Díez‐Pascual,Alba Lomas Redondo,Pilar García-Díaz
出处
期刊:Composites Part B-engineering [Elsevier BV]
卷期号:269: 111099-111099 被引量:23
标识
DOI:10.1016/j.compositesb.2023.111099
摘要

Machine learning (ML) models provide fast and accurate predictions of material properties at a low computational cost. Herein, the mechanical properties of multiscale poly(3-hydroxybutyrate) (P3HB)-based nanocomposites reinforced with different concentrations of multiwalled carbon nanotubes (MWCNTs), WS2 nanosheets and sepiolite (SEP) nanoclay have been predicted. The nanocomposites were prepared via solution casting. SEM images revealed that the three nanofillers were homogenously and randomly dispersed into the matrix. A synergistic reinforcement effect was attained, resulting in an unprecedented stiffness improvement of 132% upon addition of 1:2:2 wt% SEP:MWCNTs:WS2. Conversely, the increments in strength were only moderates (up to 13.4%). A beneficial effect in the matrix ductility was also found due to the presence of both nanofillers. Four ML approaches, Recurrent Neural Network (RNN), RNN with Levenberg's algorithm (RNN-LV), decision tree (DT) and Random Forest (RF), were applied. The correlation coefficient (R2), mean absolute error (MAE) and mean square error (MSE) were used as statistical indicators to compare their performance. The best-performing model for the Young's modulus was RNN-LV with 3 hidden layers and 50 neurons in each layer, while for the tensile strength was the RF model using a combination of 100 estimators and a maximum depth of 100. An RNN model with 3 hidden layers was the most suitable to predict the elongation at break and impact strength, with 90 and 50 neurons in each layer, respectively. The highest correlation (R2 of 1 and 0.9203 for the training and test set, respectively) and the smallest errors (MSE of 0.13 and MAE of 0.31) were obtained for the prediction of the elongation at break. The developed models represent a powerful tool for the optimization of the mechanical properties in multiscale hybrid polymer nanocomposites, saving time and resources in the experimental characterization process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上善若水完成签到 ,获得积分10
5秒前
天将明完成签到 ,获得积分10
7秒前
Ning完成签到 ,获得积分10
8秒前
思源应助筱奇采纳,获得10
8秒前
聪慧芷巧完成签到,获得积分10
9秒前
南宫士晋完成签到 ,获得积分10
10秒前
平常的三问完成签到 ,获得积分10
12秒前
831143完成签到 ,获得积分0
28秒前
害羞的雁易完成签到 ,获得积分10
28秒前
ZH完成签到,获得积分10
32秒前
音殿完成签到 ,获得积分10
33秒前
浮游应助欧阳采纳,获得10
37秒前
xiaoqiang009完成签到 ,获得积分10
42秒前
sunnyqqz完成签到,获得积分10
44秒前
47秒前
47秒前
WilliamJarvis完成签到 ,获得积分10
48秒前
1797472009完成签到 ,获得积分10
50秒前
roundtree完成签到 ,获得积分0
50秒前
lling完成签到 ,获得积分10
51秒前
归尘发布了新的文献求助10
53秒前
春花完成签到,获得积分10
54秒前
潇洒的语蝶完成签到 ,获得积分10
59秒前
三脸茫然完成签到 ,获得积分0
1分钟前
铜豌豆完成签到 ,获得积分10
1分钟前
唐唐完成签到,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
Yoanna应助科研通管家采纳,获得40
1分钟前
1分钟前
1分钟前
啦啦啦完成签到 ,获得积分10
1分钟前
ESC惠子子子子子完成签到 ,获得积分10
1分钟前
梓树完成签到,获得积分10
1分钟前
宋景完成签到,获得积分10
1分钟前
笨鸟先飞完成签到 ,获得积分10
1分钟前
ljssll完成签到,获得积分10
1分钟前
yang完成签到,获得积分20
1分钟前
落雪完成签到 ,获得积分10
1分钟前
yang发布了新的文献求助30
1分钟前
坦率雪枫完成签到 ,获得积分10
1分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
The New Psychology of Health 500
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5200542
求助须知:如何正确求助?哪些是违规求助? 4380655
关于积分的说明 13639485
捐赠科研通 4237506
什么是DOI,文献DOI怎么找? 2324789
邀请新用户注册赠送积分活动 1322760
关于科研通互助平台的介绍 1274457