Optimization of mechanical properties of multiscale hybrid polymer nanocomposites: A combination of experimental and machine learning techniques

材料科学 极限抗拉强度 纳米复合材料 铸造 复合材料 均方误差 循环神经网络 碳纳米管 随机森林 延展性(地球科学) 刚度 计算机科学 人工神经网络 机器学习 数学 蠕动 统计
作者
Elizabeth Champa-Bujaico,Ana M. Díez‐Pascual,Alba Lomas Redondo,Pilar García-Díaz
出处
期刊:Composites Part B-engineering [Elsevier BV]
卷期号:269: 111099-111099 被引量:81
标识
DOI:10.1016/j.compositesb.2023.111099
摘要

Machine learning (ML) models provide fast and accurate predictions of material properties at a low computational cost. Herein, the mechanical properties of multiscale poly(3-hydroxybutyrate) (P3HB)-based nanocomposites reinforced with different concentrations of multiwalled carbon nanotubes (MWCNTs), WS2 nanosheets and sepiolite (SEP) nanoclay have been predicted. The nanocomposites were prepared via solution casting. SEM images revealed that the three nanofillers were homogenously and randomly dispersed into the matrix. A synergistic reinforcement effect was attained, resulting in an unprecedented stiffness improvement of 132% upon addition of 1:2:2 wt% SEP:MWCNTs:WS2. Conversely, the increments in strength were only moderates (up to 13.4%). A beneficial effect in the matrix ductility was also found due to the presence of both nanofillers. Four ML approaches, Recurrent Neural Network (RNN), RNN with Levenberg's algorithm (RNN-LV), decision tree (DT) and Random Forest (RF), were applied. The correlation coefficient (R2), mean absolute error (MAE) and mean square error (MSE) were used as statistical indicators to compare their performance. The best-performing model for the Young's modulus was RNN-LV with 3 hidden layers and 50 neurons in each layer, while for the tensile strength was the RF model using a combination of 100 estimators and a maximum depth of 100. An RNN model with 3 hidden layers was the most suitable to predict the elongation at break and impact strength, with 90 and 50 neurons in each layer, respectively. The highest correlation (R2 of 1 and 0.9203 for the training and test set, respectively) and the smallest errors (MSE of 0.13 and MAE of 0.31) were obtained for the prediction of the elongation at break. The developed models represent a powerful tool for the optimization of the mechanical properties in multiscale hybrid polymer nanocomposites, saving time and resources in the experimental characterization process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
张彩红发布了新的文献求助10
1秒前
1秒前
紧张的梦松完成签到,获得积分20
2秒前
2秒前
英姑应助路西法采纳,获得10
2秒前
香蕉觅云应助mm采纳,获得10
5秒前
领导范儿应助霍大宝采纳,获得10
5秒前
哩哩哩发布了新的文献求助30
5秒前
浮游应助伶俐的绿蓉采纳,获得10
5秒前
852应助黄浩采纳,获得10
5秒前
念兮完成签到,获得积分10
5秒前
6秒前
wang完成签到,获得积分10
6秒前
6秒前
7秒前
11发布了新的文献求助10
7秒前
山山而川发布了新的文献求助10
7秒前
拂晓完成签到,获得积分10
8秒前
9秒前
科研通AI6应助liminghui采纳,获得10
9秒前
量子星尘发布了新的文献求助10
10秒前
充电宝应助TheYNJ采纳,获得10
10秒前
暮色完成签到,获得积分10
10秒前
10秒前
11秒前
璐瑶发布了新的文献求助10
11秒前
水心发布了新的文献求助10
12秒前
12秒前
wjh完成签到,获得积分10
12秒前
赘婿应助生菜采纳,获得10
13秒前
13秒前
13秒前
MajorTom发布了新的文献求助10
13秒前
复成完成签到 ,获得积分10
13秒前
infinite完成签到,获得积分10
14秒前
在水一方应助RUI采纳,获得10
14秒前
路西法完成签到,获得积分10
14秒前
15秒前
lll发布了新的文献求助10
15秒前
高分求助中
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Comparing natural with chemical additive production 500
Atlas of Liver Pathology: A Pattern-Based Approach 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5241592
求助须知:如何正确求助?哪些是违规求助? 4408299
关于积分的说明 13721568
捐赠科研通 4277372
什么是DOI,文献DOI怎么找? 2347152
邀请新用户注册赠送积分活动 1344193
关于科研通互助平台的介绍 1302357