Optimization of mechanical properties of multiscale hybrid polymer nanocomposites: A combination of experimental and machine learning techniques

材料科学 极限抗拉强度 纳米复合材料 铸造 复合材料 均方误差 循环神经网络 碳纳米管 随机森林 延展性(地球科学) 算法 计算机科学 人工神经网络 机器学习 数学 蠕动 统计
作者
Elizabeth Champa-Bujaico,Ana M. Díez‐Pascual,Alba Lomas Redondo,Pilar García-Díaz
出处
期刊:Composites Part B-engineering [Elsevier BV]
卷期号:269: 111099-111099 被引量:23
标识
DOI:10.1016/j.compositesb.2023.111099
摘要

Machine learning (ML) models provide fast and accurate predictions of material properties at a low computational cost. Herein, the mechanical properties of multiscale poly(3-hydroxybutyrate) (P3HB)-based nanocomposites reinforced with different concentrations of multiwalled carbon nanotubes (MWCNTs), WS2 nanosheets and sepiolite (SEP) nanoclay have been predicted. The nanocomposites were prepared via solution casting. SEM images revealed that the three nanofillers were homogenously and randomly dispersed into the matrix. A synergistic reinforcement effect was attained, resulting in an unprecedented stiffness improvement of 132% upon addition of 1:2:2 wt% SEP:MWCNTs:WS2. Conversely, the increments in strength were only moderates (up to 13.4%). A beneficial effect in the matrix ductility was also found due to the presence of both nanofillers. Four ML approaches, Recurrent Neural Network (RNN), RNN with Levenberg's algorithm (RNN-LV), decision tree (DT) and Random Forest (RF), were applied. The correlation coefficient (R2), mean absolute error (MAE) and mean square error (MSE) were used as statistical indicators to compare their performance. The best-performing model for the Young's modulus was RNN-LV with 3 hidden layers and 50 neurons in each layer, while for the tensile strength was the RF model using a combination of 100 estimators and a maximum depth of 100. An RNN model with 3 hidden layers was the most suitable to predict the elongation at break and impact strength, with 90 and 50 neurons in each layer, respectively. The highest correlation (R2 of 1 and 0.9203 for the training and test set, respectively) and the smallest errors (MSE of 0.13 and MAE of 0.31) were obtained for the prediction of the elongation at break. The developed models represent a powerful tool for the optimization of the mechanical properties in multiscale hybrid polymer nanocomposites, saving time and resources in the experimental characterization process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
RaynorHank完成签到,获得积分10
1秒前
CScs25完成签到,获得积分10
1秒前
呼呼啦啦完成签到,获得积分10
1秒前
青山完成签到,获得积分10
1秒前
粥粥完成签到,获得积分0
1秒前
束玲玲完成签到,获得积分10
1秒前
Leeu完成签到,获得积分10
1秒前
jyu完成签到,获得积分10
2秒前
新帅完成签到,获得积分10
2秒前
桑榆非晚完成签到,获得积分10
2秒前
令狐万仇完成签到,获得积分10
2秒前
chen完成签到,获得积分10
2秒前
zzzzzzzp完成签到,获得积分10
2秒前
taytay完成签到,获得积分10
2秒前
LEE123完成签到,获得积分10
2秒前
3秒前
Lze发布了新的文献求助10
3秒前
希望天下0贩的0应助夜夜采纳,获得10
3秒前
猫小咪发布了新的文献求助10
4秒前
RaynorHank发布了新的文献求助50
4秒前
4秒前
cccccc完成签到,获得积分10
5秒前
maiyatang完成签到,获得积分10
5秒前
5秒前
小马甲应助2633148059采纳,获得10
6秒前
miao完成签到,获得积分10
6秒前
Bertha完成签到,获得积分10
6秒前
11完成签到,获得积分10
6秒前
6秒前
SciGPT应助Baron采纳,获得10
8秒前
左岸完成签到,获得积分10
8秒前
cong完成签到,获得积分10
8秒前
不低头完成签到,获得积分10
8秒前
8秒前
phil完成签到,获得积分10
9秒前
camellia完成签到 ,获得积分10
9秒前
samuel完成签到,获得积分10
9秒前
在水一方应助梧桐雨210采纳,获得10
9秒前
helinahs发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
A Half Century of the Sonogashira Reaction 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Modern Britain, 1750 to the Present (求助第2版!!!) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5162882
求助须知:如何正确求助?哪些是违规求助? 4355956
关于积分的说明 13560837
捐赠科研通 4200975
什么是DOI,文献DOI怎么找? 2304090
邀请新用户注册赠送积分活动 1304063
关于科研通互助平台的介绍 1250390