Optimization of mechanical properties of multiscale hybrid polymer nanocomposites: A combination of experimental and machine learning techniques

材料科学 极限抗拉强度 纳米复合材料 铸造 复合材料 均方误差 循环神经网络 碳纳米管 随机森林 延展性(地球科学) 算法 计算机科学 人工神经网络 机器学习 数学 蠕动 统计
作者
Elizabeth Champa-Bujaico,Ana M. Díez‐Pascual,Alba Lomas Redondo,Pilar García-Díaz
出处
期刊:Composites Part B-engineering [Elsevier BV]
卷期号:269: 111099-111099 被引量:23
标识
DOI:10.1016/j.compositesb.2023.111099
摘要

Machine learning (ML) models provide fast and accurate predictions of material properties at a low computational cost. Herein, the mechanical properties of multiscale poly(3-hydroxybutyrate) (P3HB)-based nanocomposites reinforced with different concentrations of multiwalled carbon nanotubes (MWCNTs), WS2 nanosheets and sepiolite (SEP) nanoclay have been predicted. The nanocomposites were prepared via solution casting. SEM images revealed that the three nanofillers were homogenously and randomly dispersed into the matrix. A synergistic reinforcement effect was attained, resulting in an unprecedented stiffness improvement of 132% upon addition of 1:2:2 wt% SEP:MWCNTs:WS2. Conversely, the increments in strength were only moderates (up to 13.4%). A beneficial effect in the matrix ductility was also found due to the presence of both nanofillers. Four ML approaches, Recurrent Neural Network (RNN), RNN with Levenberg's algorithm (RNN-LV), decision tree (DT) and Random Forest (RF), were applied. The correlation coefficient (R2), mean absolute error (MAE) and mean square error (MSE) were used as statistical indicators to compare their performance. The best-performing model for the Young's modulus was RNN-LV with 3 hidden layers and 50 neurons in each layer, while for the tensile strength was the RF model using a combination of 100 estimators and a maximum depth of 100. An RNN model with 3 hidden layers was the most suitable to predict the elongation at break and impact strength, with 90 and 50 neurons in each layer, respectively. The highest correlation (R2 of 1 and 0.9203 for the training and test set, respectively) and the smallest errors (MSE of 0.13 and MAE of 0.31) were obtained for the prediction of the elongation at break. The developed models represent a powerful tool for the optimization of the mechanical properties in multiscale hybrid polymer nanocomposites, saving time and resources in the experimental characterization process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助行歌采纳,获得10
1秒前
3秒前
3秒前
FashionBoy应助科研通管家采纳,获得10
3秒前
传奇3应助科研通管家采纳,获得10
3秒前
Dean应助科研通管家采纳,获得150
3秒前
乐乐应助科研通管家采纳,获得20
3秒前
赘婿应助科研通管家采纳,获得10
4秒前
4秒前
丘比特应助科研通管家采纳,获得10
4秒前
4秒前
李爱国应助科研通管家采纳,获得10
4秒前
谷粱姿应助科研通管家采纳,获得10
4秒前
tuanheqi应助科研通管家采纳,获得100
4秒前
量子星尘发布了新的文献求助10
4秒前
黄筱筱应助科研通管家采纳,获得30
4秒前
小马甲应助科研通管家采纳,获得10
4秒前
丘比特应助科研通管家采纳,获得10
4秒前
4秒前
CipherSage应助科研通管家采纳,获得10
4秒前
4秒前
科研通AI5应助科研通管家采纳,获得30
4秒前
4秒前
黑糖珍珠完成签到 ,获得积分10
5秒前
小怪兽发布了新的文献求助10
5秒前
予你发布了新的文献求助10
6秒前
7秒前
7秒前
惠飞薇发布了新的文献求助10
9秒前
xm发布了新的文献求助10
9秒前
赘婿应助yyu采纳,获得10
10秒前
11秒前
windows发布了新的文献求助10
11秒前
lyp发布了新的文献求助10
11秒前
cc发布了新的文献求助30
13秒前
斯文败类应助sunbigfly采纳,获得10
13秒前
斯文败类应助别梦寒采纳,获得10
14秒前
14秒前
隐形曼青应助别梦寒采纳,获得10
14秒前
在水一方应助罗翊彰采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4924698
求助须知:如何正确求助?哪些是违规求助? 4194850
关于积分的说明 13029597
捐赠科研通 3966579
什么是DOI,文献DOI怎么找? 2174058
邀请新用户注册赠送积分活动 1191544
关于科研通互助平台的介绍 1101060