Optimization of mechanical properties of multiscale hybrid polymer nanocomposites: A combination of experimental and machine learning techniques

材料科学 极限抗拉强度 纳米复合材料 铸造 复合材料 均方误差 循环神经网络 碳纳米管 随机森林 延展性(地球科学) 算法 计算机科学 人工神经网络 机器学习 数学 蠕动 统计
作者
Elizabeth Champa-Bujaico,Ana M. Díez‐Pascual,Alba Lomas Redondo,Pilar García-Díaz
出处
期刊:Composites Part B-engineering [Elsevier BV]
卷期号:269: 111099-111099 被引量:23
标识
DOI:10.1016/j.compositesb.2023.111099
摘要

Machine learning (ML) models provide fast and accurate predictions of material properties at a low computational cost. Herein, the mechanical properties of multiscale poly(3-hydroxybutyrate) (P3HB)-based nanocomposites reinforced with different concentrations of multiwalled carbon nanotubes (MWCNTs), WS2 nanosheets and sepiolite (SEP) nanoclay have been predicted. The nanocomposites were prepared via solution casting. SEM images revealed that the three nanofillers were homogenously and randomly dispersed into the matrix. A synergistic reinforcement effect was attained, resulting in an unprecedented stiffness improvement of 132% upon addition of 1:2:2 wt% SEP:MWCNTs:WS2. Conversely, the increments in strength were only moderates (up to 13.4%). A beneficial effect in the matrix ductility was also found due to the presence of both nanofillers. Four ML approaches, Recurrent Neural Network (RNN), RNN with Levenberg's algorithm (RNN-LV), decision tree (DT) and Random Forest (RF), were applied. The correlation coefficient (R2), mean absolute error (MAE) and mean square error (MSE) were used as statistical indicators to compare their performance. The best-performing model for the Young's modulus was RNN-LV with 3 hidden layers and 50 neurons in each layer, while for the tensile strength was the RF model using a combination of 100 estimators and a maximum depth of 100. An RNN model with 3 hidden layers was the most suitable to predict the elongation at break and impact strength, with 90 and 50 neurons in each layer, respectively. The highest correlation (R2 of 1 and 0.9203 for the training and test set, respectively) and the smallest errors (MSE of 0.13 and MAE of 0.31) were obtained for the prediction of the elongation at break. The developed models represent a powerful tool for the optimization of the mechanical properties in multiscale hybrid polymer nanocomposites, saving time and resources in the experimental characterization process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
MCQ完成签到,获得积分10
1秒前
zz发布了新的文献求助10
1秒前
3秒前
苦涩发布了新的文献求助10
4秒前
着急的科研狗完成签到,获得积分10
4秒前
知行合一完成签到 ,获得积分10
5秒前
11111完成签到,获得积分10
5秒前
5秒前
SPU7完成签到,获得积分10
5秒前
完美的幻波完成签到,获得积分20
6秒前
纯情的小虾米完成签到,获得积分10
7秒前
musejie应助Doct采纳,获得10
7秒前
充电宝应助黑夜不黑夜呀采纳,获得30
7秒前
Psy发布了新的文献求助10
7秒前
雪白炎彬完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
苦涩完成签到,获得积分10
10秒前
10秒前
11秒前
体贴花卷发布了新的文献求助10
12秒前
Humerus发布了新的文献求助10
12秒前
Hollen完成签到 ,获得积分10
12秒前
养乐多发布了新的文献求助10
12秒前
NexusExplorer应助Liu采纳,获得10
13秒前
13秒前
蔡文馨关注了科研通微信公众号
16秒前
老王完成签到,获得积分10
17秒前
青花完成签到,获得积分10
17秒前
17秒前
秦梓椋完成签到,获得积分10
18秒前
赘婿应助苦哈哈采纳,获得10
18秒前
烊烊的怡发布了新的文献求助10
19秒前
20秒前
mjtsurgery完成签到,获得积分20
20秒前
20秒前
21秒前
22秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3978978
求助须知:如何正确求助?哪些是违规求助? 3522830
关于积分的说明 11215177
捐赠科研通 3260355
什么是DOI,文献DOI怎么找? 1799883
邀请新用户注册赠送积分活动 878713
科研通“疑难数据库(出版商)”最低求助积分说明 807060