Optimization of mechanical properties of multiscale hybrid polymer nanocomposites: A combination of experimental and machine learning techniques

材料科学 极限抗拉强度 纳米复合材料 铸造 复合材料 均方误差 循环神经网络 碳纳米管 随机森林 延展性(地球科学) 算法 计算机科学 人工神经网络 机器学习 数学 蠕动 统计
作者
Elizabeth Champa-Bujaico,Ana M. Díez‐Pascual,Alba Lomas Redondo,Pilar García-Díaz
出处
期刊:Composites Part B-engineering [Elsevier]
卷期号:269: 111099-111099 被引量:23
标识
DOI:10.1016/j.compositesb.2023.111099
摘要

Machine learning (ML) models provide fast and accurate predictions of material properties at a low computational cost. Herein, the mechanical properties of multiscale poly(3-hydroxybutyrate) (P3HB)-based nanocomposites reinforced with different concentrations of multiwalled carbon nanotubes (MWCNTs), WS2 nanosheets and sepiolite (SEP) nanoclay have been predicted. The nanocomposites were prepared via solution casting. SEM images revealed that the three nanofillers were homogenously and randomly dispersed into the matrix. A synergistic reinforcement effect was attained, resulting in an unprecedented stiffness improvement of 132% upon addition of 1:2:2 wt% SEP:MWCNTs:WS2. Conversely, the increments in strength were only moderates (up to 13.4%). A beneficial effect in the matrix ductility was also found due to the presence of both nanofillers. Four ML approaches, Recurrent Neural Network (RNN), RNN with Levenberg's algorithm (RNN-LV), decision tree (DT) and Random Forest (RF), were applied. The correlation coefficient (R2), mean absolute error (MAE) and mean square error (MSE) were used as statistical indicators to compare their performance. The best-performing model for the Young's modulus was RNN-LV with 3 hidden layers and 50 neurons in each layer, while for the tensile strength was the RF model using a combination of 100 estimators and a maximum depth of 100. An RNN model with 3 hidden layers was the most suitable to predict the elongation at break and impact strength, with 90 and 50 neurons in each layer, respectively. The highest correlation (R2 of 1 and 0.9203 for the training and test set, respectively) and the smallest errors (MSE of 0.13 and MAE of 0.31) were obtained for the prediction of the elongation at break. The developed models represent a powerful tool for the optimization of the mechanical properties in multiscale hybrid polymer nanocomposites, saving time and resources in the experimental characterization process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陌浅然发布了新的文献求助10
1秒前
3秒前
3秒前
善学以致用应助guard采纳,获得10
4秒前
Singularity应助keke采纳,获得10
5秒前
luluyu完成签到,获得积分10
6秒前
7秒前
YYH完成签到,获得积分10
8秒前
10秒前
Orange应助啊我是那个谁采纳,获得30
10秒前
11秒前
我是老大应助王不留行采纳,获得10
11秒前
11秒前
11秒前
小谷完成签到,获得积分10
12秒前
平平幻灵完成签到,获得积分10
13秒前
DKN发布了新的文献求助10
14秒前
研友_LNoDrn发布了新的文献求助10
15秒前
小谷发布了新的文献求助10
15秒前
LZ完成签到,获得积分10
16秒前
coldzer0发布了新的文献求助10
16秒前
17秒前
okra完成签到,获得积分10
19秒前
zz完成签到,获得积分10
19秒前
共享精神应助小谷采纳,获得10
20秒前
20秒前
20秒前
20秒前
平平幻灵发布了新的文献求助10
21秒前
LZ发布了新的文献求助20
21秒前
啊我是那个谁给啊我是那个谁的求助进行了留言
21秒前
22秒前
Silole完成签到,获得积分10
22秒前
小张发布了新的文献求助10
24秒前
xxww发布了新的文献求助10
24秒前
隐形曼青应助幽默的又夏采纳,获得10
24秒前
禁止通行完成签到,获得积分10
25秒前
CipherSage应助AnJaShua采纳,获得10
25秒前
26秒前
初雪完成签到,获得积分10
26秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3145328
求助须知:如何正确求助?哪些是违规求助? 2796792
关于积分的说明 7821187
捐赠科研通 2453031
什么是DOI,文献DOI怎么找? 1305409
科研通“疑难数据库(出版商)”最低求助积分说明 627487
版权声明 601464