Accurate expression of neck motion signal by piezoelectric sensor data analysis

小波 信号(编程语言) 噪音(视频) 灵敏度(控制系统) 压阻效应 计算机科学 降噪 声学 波形 信号处理 人工智能 材料科学 电子工程 物理 工程类 光电子学 电信 雷达 图像(数学) 程序设计语言
作者
Shi Neng,Haonan Jia,Jixiang Zhang,Pengyu Lu,Chenglong Cai,Yixin Zhang,Liqiang Zhang,Nongyue He,Weiran Zhu,Yan Cai,Zhang‐Qi Feng,Ting Wang
出处
期刊:Chinese Chemical Letters [Elsevier]
卷期号:35 (9): 109302-109302 被引量:3
标识
DOI:10.1016/j.cclet.2023.109302
摘要

The development of high-precision sensors using flexible piezoelectric materials has the advantages of high sensitivity, high stability, good durability, and lightweight. The main problem with sensing equipment is low sensitivity, which is due to the mismatch between materials and analysis methods, resulting in the inability to effectively eliminate noise. To address this issue, we developed the denoising analysis method to motion signals captured by a flexible piezoelectric sensor fabricated from poly-L-lactic acid (PLLA) and polydimethylsiloxane (PDMS) materials. Experimental results demonstrate that this improved denoising method effectively removes noise components from neck muscle motion signals, thus obtaining high-quality, low-noise motion signal waveforms. Wavelet decomposition and reconstruction is a signal processing technique that involves decomposing a signal into different scales and frequency components using wavelets and then selectively reconstructing the signal to emphasize specific features or eliminate noise. The study employed the sym8 wavelet basis for wavelet decomposition and reconstruction. In the denoised signals, a high degree of stability and periodic peaks are distinctly manifested, while amplitude and frequency differences among different types of movements also become noticeably visible. As a result of this study, we are enabled to accurately analyze subtle variations in neck muscle motion signals, such as nodding, shaking the head, neck lateral flexion, and neck circles. Through temporal and frequency domain analysis of denoised motion signals, differentiation among various motion states can be achieved. Overall, this improved analytical approach holds broad application prospects across various types of piezoelectric sensors, such as healthcare monitoring, sports biomechanics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
hokuto应助歌于心采纳,获得10
3秒前
今后应助PhDshi采纳,获得10
3秒前
badada完成签到,获得积分10
4秒前
4秒前
温婉的夏烟完成签到 ,获得积分10
5秒前
5秒前
谨慎不二完成签到,获得积分10
6秒前
6秒前
liian7发布了新的文献求助200
7秒前
March完成签到,获得积分10
8秒前
10秒前
筱溪完成签到 ,获得积分10
10秒前
11秒前
kangsynat完成签到 ,获得积分10
12秒前
星辰发布了新的文献求助10
12秒前
科研通AI2S应助零花钱采纳,获得10
13秒前
研友_VZG7GZ应助研友_nPoXoL采纳,获得10
13秒前
kxy完成签到,获得积分10
15秒前
李健的小迷弟应助ma采纳,获得10
15秒前
完美世界应助lan采纳,获得10
15秒前
科研通AI2S应助lan采纳,获得10
15秒前
Barton应助lan采纳,获得10
15秒前
pluto应助lan采纳,获得10
15秒前
Lvhao应助坦率迎海zzh采纳,获得10
20秒前
一二三四五完成签到,获得积分10
21秒前
23秒前
领导范儿应助YJY采纳,获得10
24秒前
27秒前
27秒前
kll完成签到,获得积分10
30秒前
fr0zen完成签到,获得积分10
30秒前
Akim应助fifteen采纳,获得10
30秒前
31秒前
喵喵发布了新的文献求助10
32秒前
Orange应助书羽采纳,获得10
33秒前
冷酷的慕蕊完成签到 ,获得积分10
33秒前
qin希望应助烈酒一醉方休采纳,获得10
33秒前
agicmoon完成签到,获得积分10
35秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160952
求助须知:如何正确求助?哪些是违规求助? 2812175
关于积分的说明 7894698
捐赠科研通 2471057
什么是DOI,文献DOI怎么找? 1315853
科研通“疑难数据库(出版商)”最低求助积分说明 631036
版权声明 602068