亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep learning-based grading of white matter hyperintensities enables identification of potential markers in multi-sequence MRI data

高强度 部分各向异性 流体衰减反转恢复 磁共振成像 人工智能 白质 试验装置 磁共振弥散成像 模式识别(心理学) 神经影像学 计算机科学 心理学 医学 神经科学 放射科
作者
si mu,Weizhao Lu,Guanghui Yu,Lei Zheng,Jianfeng Qiu
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:243: 107904-107904 被引量:1
标识
DOI:10.1016/j.cmpb.2023.107904
摘要

White matter hyperintensities (WMHs) are widely-seen in the aging population, which are associated with cerebrovascular risk factors and age-related cognitive decline. At present, structural atrophy and functional alterations coexisted with WMHs lacks comprehensive investigation. This study developed a WMHs risk prediction model to evaluate WHMs according to Fazekas scales, and to locate potential regions with high risks across the entire brain.We developed a WMHs risk prediction model, which consisted of the following steps: T2 fluid attenuated inversion recovery (T2-FLAIR) image of each participant was firstly segmented into 1000 tiles with the size of 32 × 32 × 1, features from the tiles were extracted using the ResNet18-based feature extractor, and then a 1D convolutional neural network (CNN) was used to score all tiles based on the extracted features. Finally, a multi-layer perceptron (MLP) was constructed to predict the Fazekas scales based on the tile scores. The proposed model was trained using T2-FLAIR images, we selected tiles with abnormal scores in the test set after prediction, and evaluated their corresponding gray matter (GM) volume, white matter (WM) volume, fractional anisotropy (FA), mean diffusivity (MD), and cerebral blood flow (CBF) via longitudinal and multi-sequence Magnetic Resonance Imaging (MRI) data analysis.The proposed WMHs risk prediction model could accurately predict the Fazekas ratings based on the tile scores from T2-FLAIR MRI images with accuracy of 0.656, 0.621 in training data set and test set, respectively. The longitudinal MRI validation revealed that most of the high-risk tiles predicted by the WMHs risk prediction model in the baseline images had WMHs in the corresponding positions in the longitudinal images. The validation on multi-sequence MRI demonstrated that WMHs were associated with GM and WM atrophies, WM micro-structural and perfusion alterations in high-risk tiles, and multi-modal MRI measures of most high-risk tiles showed significant associations with Mini Mental State Examination (MMSE) score.Our proposed WMHs risk prediction model can not only accurately evaluate WMH severities according to Fazekas scales, but can also uncover potential markers of WMHs across modalities. The WMHs risk prediction model has the potential to be used for the early detection of WMH-related alterations in the entire brain and WMH-induced cognitive decline.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
解觅荷发布了新的文献求助10
3秒前
阿皮完成签到,获得积分10
11秒前
zgznb完成签到,获得积分20
16秒前
解觅荷完成签到,获得积分20
22秒前
桐桐应助科研通管家采纳,获得10
31秒前
31秒前
桐桐应助buerger采纳,获得10
36秒前
41秒前
41秒前
42秒前
44秒前
科研通AI2S应助解觅荷采纳,获得10
44秒前
45秒前
buerger发布了新的文献求助10
49秒前
斯皮克完成签到,获得积分10
51秒前
51秒前
buerger完成签到,获得积分20
55秒前
艺玲发布了新的文献求助10
1分钟前
1分钟前
1分钟前
冷静的莞完成签到 ,获得积分10
1分钟前
1分钟前
LJL完成签到 ,获得积分10
1分钟前
不开心就吃糖完成签到 ,获得积分10
1分钟前
不安青牛应助艺玲采纳,获得10
1分钟前
Furmark_14完成签到,获得积分10
1分钟前
onmyway发布了新的文献求助10
1分钟前
1分钟前
朴素草丛发布了新的文献求助10
1分钟前
e任思完成签到 ,获得积分10
1分钟前
乌龙掌柜完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
tyd完成签到,获得积分10
2分钟前
kai0305完成签到,获得积分10
2分钟前
樱桃猴子应助chenyuns采纳,获得100
2分钟前
丁爽发布了新的文献求助10
2分钟前
矢思然完成签到,获得积分10
2分钟前
彩色莞完成签到 ,获得积分10
3分钟前
所所应助丁爽采纳,获得10
3分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3154858
求助须知:如何正确求助?哪些是违规求助? 2805666
关于积分的说明 7865599
捐赠科研通 2463838
什么是DOI,文献DOI怎么找? 1311626
科研通“疑难数据库(出版商)”最低求助积分说明 629654
版权声明 601832