Interface engineering and oxygen vacancy of hollow/porous Co–CoO heterojunction nanoframes for high-activity electrocatalysis overall water splitting

过电位 异质结 电催化剂 析氧 煅烧 分解水 材料科学 空位缺陷 化学工程 氧气 纳米技术 催化作用 化学物理 化学 光催化 电极 光电子学 物理化学 结晶学 电化学 生物化学 有机化学 工程类 冶金
作者
Hui Feng,Dongxuan Guo,Dong‐Feng Chai,Wenzhi Zhang,Zhuanfang Zhang,Liming Bai,Jin Xing,Guohua Dong
出处
期刊:International Journal of Hydrogen Energy [Elsevier]
卷期号:51: 732-741 被引量:4
标识
DOI:10.1016/j.ijhydene.2023.10.190
摘要

Cobalt-based oxides are regarded as promising electrocatalysts in the field of overall water splitting ascribed to superior activity and desirable stability. Nevertheless, the poor electrical conductivity and insufficient active centers limit their development seriously. Herein, the hollow/porous Co–CoO nanoframes (denoted as Co–CoO NFs) with heterojunction and abundant oxygen vacancies have been constructed via continuous calcination and in-situ reduction strategies. Furthermore, the influence of heterostructure and oxygen vacancy on electrocatalytic activity is investigated systematically. The heterojunction interface formed by Co and CoO could expose more active sites and accelerate charge transfer. Besides, oxygen vacancy could regulate electronic structure, lowering the intermediate binding energy and reducing charge transfer impedance. Furthermore, the hollow/porous structure could increase the accessible internal and external surface area. As a result, Co–CoO-400 NFs exhibit prominent hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) behavior, achieving the current density of −10 mA cm−2 and 10 mA cm−2 with the low overpotential of 103.0 and 276.0 mV, respectively, and the voltage required for overall water splitting is 1.54 V, surpassing the most reported Co-based electrocatalysts recently. Overall, this work provides an intellection and vision for designing dual-function electrocatalysts with controllable morphology, low energy consumption, and high activity, making a significant contribution for solving the future energy crisis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wangbin743发布了新的文献求助10
1秒前
zzl完成签到,获得积分20
1秒前
Wanderer完成签到 ,获得积分10
1秒前
sxx发布了新的文献求助10
2秒前
Nini1203发布了新的文献求助10
2秒前
复杂鼠标发布了新的文献求助10
2秒前
lishi完成签到,获得积分10
2秒前
菠萝吹雪完成签到,获得积分10
3秒前
Jasper应助赵油油采纳,获得10
3秒前
3秒前
JOAN发布了新的文献求助10
4秒前
NexusExplorer应助会飞的猪采纳,获得10
4秒前
隐形曼青应助一颗大白菜采纳,获得10
4秒前
万能图书馆应助醉熏的伊采纳,获得10
4秒前
4秒前
研友_VZG7GZ应助mata19采纳,获得10
5秒前
5秒前
研友_VZG7GZ应助广寒月采纳,获得10
5秒前
华仔应助田静然采纳,获得10
6秒前
6秒前
wendy完成签到,获得积分10
7秒前
顺利的伊应助毛慢慢采纳,获得10
7秒前
2022.20完成签到,获得积分10
8秒前
8秒前
2024_08_09发布了新的文献求助10
8秒前
ding应助henry采纳,获得10
8秒前
诚心的千万完成签到,获得积分10
10秒前
努力努力再努力完成签到,获得积分10
10秒前
风雪夜归人完成签到,获得积分10
10秒前
科目三应助Yii采纳,获得30
11秒前
fuxiao发布了新的文献求助10
12秒前
jwj发布了新的文献求助10
12秒前
幸运星发布了新的文献求助10
13秒前
Lucas应助激动的士萧采纳,获得10
14秒前
15秒前
来检验完成签到,获得积分10
16秒前
17秒前
机智的荔枝菌完成签到,获得积分10
18秒前
QhL发布了新的文献求助20
18秒前
20秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
A new approach of magnetic circular dichroism to the electronic state analysis of intact photosynthetic pigments 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148786
求助须知:如何正确求助?哪些是违规求助? 2799787
关于积分的说明 7837076
捐赠科研通 2457292
什么是DOI,文献DOI怎么找? 1307821
科研通“疑难数据库(出版商)”最低求助积分说明 628276
版权声明 601663