Human Activity Recognition based on Local Linear Embedding and Geodesic Flow Kernel on Grassmann manifolds

核(代数) 计算机科学 测地线 领域(数学分析) 嵌入 学习迁移 相似性(几何) 模式识别(心理学) 人工智能 核方法 歧管(流体力学) 数学 算法 支持向量机 图像(数学) 数学分析 工程类 组合数学 机械工程
作者
Huaijun Wang,Jian Yang,Changrui Cui,Pengjia Tu,Junhuai Li,Bo Fu,Wei Xiang
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:241: 122696-122696 被引量:1
标识
DOI:10.1016/j.eswa.2023.122696
摘要

Human Activity Recognition (HAR) plays a crucial role in various applications(e.g., medical treatment, video surveillance and sports monitoring). Transfer learning is a promising solution to cross-domain identification problems in HAR. However, existing methods usually ignore the negative transfer caused by using the features of each source domain in equal proportions, as well as the distribution difference between the source and target domains. In this paper, an HAR method based on manifold learning is proposed. Firstly, the similarity between the domain and multiple source domains is calculated using the Multi-Kernel-Maximum Mean Difference (MK-MMD), and the source domain most similar to the target domain is selected as the optimal source domain in the transfer task. Secondly, Locally Linear Embedding (LLE) is leveraged to reduce the dimensionality of both optimal source domain and target domain data to remove redundant information, and the Geodesic Flow Kernel (GFK) is utilized to project low-dimensional data into the Grassmann manifold space and reduce the distribution difference between the two domains. Finally, the source domain action training model is applied to the target domain. Three public datasets (i.e., PAMAP2, OPPORTUNITY and UCI DSADS) are utilized to validate the effectiveness of the proposed approach. Experimental results are presented to demonstrate that the proposed HAR method can predict a large number of unlabeled samples in the target domain while preserving the original data structure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马同学应助齐文轩采纳,获得10
刚刚
成太发布了新的文献求助10
1秒前
1秒前
Eureka105发布了新的文献求助10
1秒前
hsx完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
3秒前
一半可发布了新的文献求助10
3秒前
zSmart完成签到,获得积分10
3秒前
西尔多完成签到,获得积分20
3秒前
sxpab发布了新的文献求助10
4秒前
xu完成签到,获得积分20
5秒前
子川完成签到,获得积分10
6秒前
rikarin关注了科研通微信公众号
6秒前
柠柠完成签到,获得积分10
6秒前
7秒前
汉堡包应助研友_LmVygn采纳,获得10
7秒前
Yanglk发布了新的文献求助10
7秒前
chu发布了新的文献求助10
8秒前
深情安青应助Lilili采纳,获得10
8秒前
还没想好完成签到,获得积分10
8秒前
9秒前
123驳回了小青椒应助
9秒前
脑洞疼应助wwwyh采纳,获得10
9秒前
小波完成签到,获得积分20
9秒前
墩墩发布了新的文献求助10
11秒前
11秒前
12秒前
12秒前
嘟嘟嘟完成签到,获得积分10
12秒前
12秒前
车梓银完成签到 ,获得积分10
13秒前
13秒前
诸葛语蝶完成签到,获得积分10
13秒前
高兴的萃关注了科研通微信公众号
13秒前
BALL完成签到,获得积分10
13秒前
轻松靖巧发布了新的文献求助10
13秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5192215
求助须知:如何正确求助?哪些是违规求助? 4375198
关于积分的说明 13624085
捐赠科研通 4229463
什么是DOI,文献DOI怎么找? 2319944
邀请新用户注册赠送积分活动 1318415
关于科研通互助平台的介绍 1268598