Human Activity Recognition based on Local Linear Embedding and Geodesic Flow Kernel on Grassmann manifolds

核(代数) 计算机科学 测地线 领域(数学分析) 嵌入 学习迁移 相似性(几何) 模式识别(心理学) 人工智能 核方法 歧管(流体力学) 数学 算法 支持向量机 图像(数学) 数学分析 机械工程 组合数学 工程类
作者
Huaijun Wang,Jian Yang,Changrui Cui,Pengjia Tu,Junhuai Li,Bo Fu,Wei Xiang
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:241: 122696-122696 被引量:1
标识
DOI:10.1016/j.eswa.2023.122696
摘要

Human Activity Recognition (HAR) plays a crucial role in various applications(e.g., medical treatment, video surveillance and sports monitoring). Transfer learning is a promising solution to cross-domain identification problems in HAR. However, existing methods usually ignore the negative transfer caused by using the features of each source domain in equal proportions, as well as the distribution difference between the source and target domains. In this paper, an HAR method based on manifold learning is proposed. Firstly, the similarity between the domain and multiple source domains is calculated using the Multi-Kernel-Maximum Mean Difference (MK-MMD), and the source domain most similar to the target domain is selected as the optimal source domain in the transfer task. Secondly, Locally Linear Embedding (LLE) is leveraged to reduce the dimensionality of both optimal source domain and target domain data to remove redundant information, and the Geodesic Flow Kernel (GFK) is utilized to project low-dimensional data into the Grassmann manifold space and reduce the distribution difference between the two domains. Finally, the source domain action training model is applied to the target domain. Three public datasets (i.e., PAMAP2, OPPORTUNITY and UCI DSADS) are utilized to validate the effectiveness of the proposed approach. Experimental results are presented to demonstrate that the proposed HAR method can predict a large number of unlabeled samples in the target domain while preserving the original data structure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助科研通管家采纳,获得10
刚刚
汉堡包应助科研通管家采纳,获得10
刚刚
英俊的铭应助内向问寒采纳,获得10
刚刚
田様应助科研通管家采纳,获得10
刚刚
烟花应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
赘婿应助科研通管家采纳,获得10
刚刚
桐桐应助科研通管家采纳,获得10
刚刚
小马甲应助科研通管家采纳,获得30
1秒前
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
赘婿应助科研通管家采纳,获得30
1秒前
1秒前
Ava应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
1秒前
量子星尘发布了新的文献求助10
2秒前
3秒前
3秒前
爆米花应助sdl采纳,获得10
4秒前
高文雅发布了新的文献求助10
5秒前
pandary完成签到,获得积分10
5秒前
風声鶴唳发布了新的文献求助10
5秒前
Licy发布了新的文献求助10
5秒前
Alisanda发布了新的文献求助10
6秒前
Inovation完成签到,获得积分10
6秒前
7秒前
smile发布了新的文献求助10
7秒前
安晓慧完成签到,获得积分10
7秒前
8秒前
热情的戾发布了新的文献求助10
8秒前
令人秃头完成签到 ,获得积分10
10秒前
李健的小迷弟应助小冲采纳,获得10
10秒前
ZZZ完成签到,获得积分10
11秒前
yjc关注了科研通微信公众号
12秒前
13秒前
练习时长两年半应助kinmke采纳,获得10
14秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3978493
求助须知:如何正确求助?哪些是违规求助? 3522581
关于积分的说明 11213889
捐赠科研通 3260014
什么是DOI,文献DOI怎么找? 1799712
邀请新用户注册赠送积分活动 878604
科研通“疑难数据库(出版商)”最低求助积分说明 807002