Human Activity Recognition based on Local Linear Embedding and Geodesic Flow Kernel on Grassmann manifolds

核(代数) 计算机科学 测地线 领域(数学分析) 嵌入 学习迁移 相似性(几何) 模式识别(心理学) 人工智能 歧管(流体力学) 数学 算法 图像(数学) 数学分析 工程类 组合数学 机械工程
作者
Huaijun Wang,Jian Yang,Changrui Cui,Pengjia Tu,Junhuai Li,Bo Fu,Xiang Wang
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:241: 122696-122696
标识
DOI:10.1016/j.eswa.2023.122696
摘要

Human Activity Recognition (HAR) plays a crucial role in various applications(e.g., medical treatment, video surveillance and sports monitoring). Transfer learning is a promising solution to cross-domain identification problems in HAR. However, existing methods usually ignore the negative transfer caused by using the features of each source domain in equal proportions, as well as the distribution difference between the source and target domains. In this paper, an HAR method based on manifold learning is proposed. Firstly, the similarity between the domain and multiple source domains is calculated using the Multi-Kernel-Maximum Mean Difference (MK-MMD), and the source domain most similar to the target domain is selected as the optimal source domain in the transfer task. Secondly, Locally Linear Embedding (LLE) is leveraged to reduce the dimensionality of both optimal source domain and target domain data to remove redundant information, and the Geodesic Flow Kernel (GFK) is utilized to project low-dimensional data into the Grassmann manifold space and reduce the distribution difference between the two domains. Finally, the source domain action training model is applied to the target domain. Three public datasets (i.e., PAMAP2, OPPORTUNITY and UCI DSADS) are utilized to validate the effectiveness of the proposed approach. Experimental results are presented to demonstrate that the proposed HAR method can predict a large number of unlabeled samples in the target domain while preserving the original data structure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柔弱亦寒完成签到,获得积分10
1秒前
不驯完成签到 ,获得积分0
2秒前
xch发布了新的文献求助10
2秒前
3秒前
3秒前
咎世立发布了新的文献求助10
4秒前
5秒前
6秒前
小新完成签到,获得积分10
6秒前
正直发箍给正直发箍的求助进行了留言
6秒前
shhhhh发布了新的文献求助10
8秒前
wings发布了新的文献求助10
8秒前
9秒前
共享精神应助xch采纳,获得10
9秒前
9秒前
上官若男应助KK采纳,获得10
10秒前
10秒前
今后应助一丢丢采纳,获得10
11秒前
小新发布了新的文献求助10
12秒前
13秒前
云朵发布了新的文献求助10
13秒前
13秒前
跳跃志泽发布了新的文献求助10
13秒前
欧克完成签到,获得积分10
14秒前
LY发布了新的文献求助10
14秒前
jingyu发布了新的文献求助10
15秒前
xch完成签到,获得积分10
16秒前
SYSUer完成签到,获得积分10
16秒前
科研通AI2S应助苹果骑士采纳,获得10
17秒前
无奈达发布了新的文献求助80
19秒前
我是老大应助跳跃志泽采纳,获得10
19秒前
无限山晴发布了新的文献求助10
19秒前
19秒前
19秒前
ABin发布了新的文献求助10
19秒前
可乐完成签到,获得积分10
20秒前
20秒前
思源应助小邹采纳,获得10
20秒前
李爱国应助细心悟空采纳,获得10
21秒前
22秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3306741
求助须知:如何正确求助?哪些是违规求助? 2940503
关于积分的说明 8497451
捐赠科研通 2614749
什么是DOI,文献DOI怎么找? 1428486
科研通“疑难数据库(出版商)”最低求助积分说明 663427
邀请新用户注册赠送积分活动 648259