Resolving heterogeneity in Alzheimer's disease based on individualized structural covariance network

疾病 神经影像学 颞叶 阿尔茨海默病神经影像学倡议 阿尔茨海默病 神经科学 肿瘤科 认知 心理学 内科学 医学 生物 生物信息学 癫痫
作者
Chuchu Zheng,Wei Zhao,Zeyu Yang,Dier Tang,Feng Min-ying,Shuixia Guo
出处
期刊:Progress in Neuro-psychopharmacology & Biological Psychiatry [Elsevier]
卷期号:129: 110873-110873 被引量:1
标识
DOI:10.1016/j.pnpbp.2023.110873
摘要

The heterogeneity of Alzheimer's disease (AD) poses a challenge to precision medicine. We aimed to identify distinct subtypes of AD based on the individualized structural covariance network (IDSCN) analysis and to research the underlying neurobiology mechanisms. In this study, 187 patients with AD (age = 73.57 ± 6.00, 50% female) and 143 matched normal controls (age = 74.30 ± 7.80, 44% female) were recruited from the Alzheimer's Disease Neuroimaging Initiative (ADNI) project database, and T1 images were acquired. We utilized the IDSCN analysis to generate individual-level altered structural covariance network and performed k-means clustering to subtype AD based on structural covariance network. Cognition, disease progression, morphological features, and gene expression profiles were further compared between subtypes, to characterize the heterogeneity in AD. Two distinct AD subtypes were identified in a reproducible manner, and we named the two subtypes as slow progression type (subtype 1, n = 104, age = 76.15 ± 6.44, 42% female) and rapid progression type (subtype 2, n = 83, age = 71.98 ± 8.72, 47% female), separately. Subtype 1 had better baseline visuospatial function than subtype 2 (p < 0.05), whereas subtype 2 had better baseline memory function than subtype 1 (p < 0.05). Subtype 2 showed worse progression in memory (p = 0.003), language (p = 0.003), visuospatial function (p = 0.020), and mental state (p = 0.038) than subtype 1. Subtype 1 often shared increased structural covariance network, mainly in the frontal lobe and temporal lobe regions, whereas subtype 2 often shared increased structural covariance network, mainly in occipital lobe regions and temporal lobe regions. Functional annotation further revealed that all differential structural covariance network between the two AD subtypes were mainly implicated in memory, learning, emotion, and cognition. Additionally, differences in gray matter volume (GMV) between AD subtypes were identified, and genes associated with GMV differences were found to be enriched in the terms potassium ion transport, synapse organization, and histone modification and the pathways viral infection, neurodegeneration-multiple diseases, and long-term depression. The two distinct AD subtypes were identified and characterized with neuroanatomy, cognitive trajectories, and gene expression profiles. These comprehensive results have implications for neurobiology mechanisms and precision medicine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
迷路念真完成签到,获得积分20
1秒前
宇是眼中星眸完成签到 ,获得积分10
1秒前
2秒前
3秒前
Langsam发布了新的文献求助10
3秒前
3秒前
4秒前
an完成签到,获得积分10
6秒前
NiLou完成签到,获得积分10
7秒前
在水一方应助阿巴阿巴采纳,获得10
7秒前
8秒前
龙龙完成签到 ,获得积分10
8秒前
Jiang-Yujia发布了新的文献求助10
9秒前
10秒前
英姑应助mojomars采纳,获得10
10秒前
123456发布了新的文献求助10
11秒前
情怀应助apple采纳,获得10
11秒前
称心的海蓝完成签到 ,获得积分10
11秒前
11秒前
Jasper应助lilac采纳,获得10
11秒前
所所应助自由莺采纳,获得10
12秒前
12秒前
yaohan1121发布了新的文献求助10
12秒前
14秒前
luxlili完成签到,获得积分10
14秒前
张大猛完成签到,获得积分20
15秒前
李健应助迷路念真采纳,获得10
15秒前
曾经的孤萍完成签到,获得积分10
15秒前
16秒前
斯文幻天发布了新的文献求助10
16秒前
小蘑菇应助酷酷妙梦采纳,获得10
18秒前
指导灰发布了新的文献求助10
18秒前
科目三应助司徒无剑采纳,获得10
18秒前
今后应助开朗以亦采纳,获得10
18秒前
cyyan发布了新的文献求助10
18秒前
a雪橙完成签到 ,获得积分10
18秒前
跳跃尔琴发布了新的文献求助150
18秒前
Janson发布了新的文献求助10
19秒前
科研通AI2S应助四月胧采纳,获得10
19秒前
爱科研的萌新完成签到 ,获得积分10
19秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134791
求助须知:如何正确求助?哪些是违规求助? 2785712
关于积分的说明 7773726
捐赠科研通 2441524
什么是DOI,文献DOI怎么找? 1297985
科研通“疑难数据库(出版商)”最低求助积分说明 625075
版权声明 600825