Discovery of novel JAK1 inhibitors through combining machine learning, structure-based pharmacophore modeling and bio-evaluation

药效团 虚拟筛选 贾纳斯激酶 计算生物学 计算机科学 对接(动物) 激酶 机器学习 化学 人工智能 生物化学 生物 医学 护理部
作者
Zixiao Wang,Lili Sun,Yu Xu,Peida Liang,Kaiyan Xu,Jing Huang
出处
期刊:Journal of Translational Medicine [Springer Nature]
卷期号:21 (1) 被引量:4
标识
DOI:10.1186/s12967-023-04443-6
摘要

Janus kinase 1 (JAK1) plays a critical role in most cytokine-mediated inflammatory, autoimmune responses and various cancers via the JAK/STAT signaling pathway. Inhibition of JAK1 is therefore an attractive therapeutic strategy for several diseases. Recently, high-performance machine learning techniques have been increasingly applied in virtual screening to develop new kinase inhibitors. Our study aimed to develop a novel layered virtual screening method based on machine learning (ML) and pharmacophore models to identify the potential JAK1 inhibitors.Firstly, we constructed a high-quality dataset comprising 3834 JAK1 inhibitors and 12,230 decoys, followed by establishing a series of classification models based on a combination of three molecular descriptors and six ML algorithms. To further screen potential compounds, we constructed several pharmacophore models based on Hiphop and receptor-ligand algorithms. We then used molecular docking to filter the recognized compounds. Finally, the binding stability and enzyme inhibition activity of the identified compounds were assessed by molecular dynamics (MD) simulations and in vitro enzyme activity tests.The best performance ML model DNN-ECFP4 and two pharmacophore models Hiphop3 and 6TPF 08 were utilized to screen the ZINC database. A total of 13 potentially active compounds were screened and the MD results demonstrated that all of the above molecules could bind with JAK1 stably in dynamic conditions. Among the shortlisted compounds, the four purchasable compounds demonstrated significant kinase inhibition activity, with Z-10 being the most active (IC50 = 194.9 nM).The current study provides an efficient and accurate integrated model. The hit compounds were promising candidates for the further development of novel JAK1 inhibitors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yao发布了新的文献求助10
1秒前
naturehome发布了新的文献求助10
1秒前
吴帆发布了新的文献求助10
3秒前
4秒前
airyletter完成签到,获得积分10
5秒前
6秒前
慕青应助我是能跌采纳,获得10
6秒前
嗯哼应助汤圆1采纳,获得20
6秒前
7秒前
英俊的铭应助超级的代柔采纳,获得10
8秒前
8秒前
xjcy应助激昂的背包采纳,获得10
8秒前
打工人不酷完成签到 ,获得积分10
8秒前
梁三柏应助正直的建辉采纳,获得10
9秒前
lvben完成签到,获得积分10
9秒前
无畏完成签到 ,获得积分10
9秒前
10秒前
隐形曼青应助yao chen采纳,获得10
10秒前
10秒前
彭于晏应助科研通管家采纳,获得10
10秒前
Orange应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
沙尘飞扬应助科研通管家采纳,获得30
10秒前
研友_VZG7GZ应助科研通管家采纳,获得10
10秒前
酷波er应助科研通管家采纳,获得10
10秒前
10秒前
Ariel完成签到,获得积分20
11秒前
师德发布了新的文献求助10
11秒前
乐正向东发布了新的文献求助10
11秒前
11秒前
小二郎应助派大珊采纳,获得10
12秒前
12秒前
Shaw应助Oceanstal采纳,获得20
12秒前
12秒前
12秒前
郭翔发布了新的文献求助10
13秒前
weiling发布了新的文献求助10
14秒前
14秒前
14秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Pharmacogenomics: Applications to Patient Care, Third Edition 800
Genera Insectorum: Mantodea, Fam. Mantidæ, Subfam. Hymenopodinæ (Classic Reprint) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3082743
求助须知:如何正确求助?哪些是违规求助? 2736027
关于积分的说明 7539806
捐赠科研通 2385554
什么是DOI,文献DOI怎么找? 1264970
科研通“疑难数据库(出版商)”最低求助积分说明 612857
版权声明 597685