Discovery of novel JAK1 inhibitors through combining machine learning, structure-based pharmacophore modeling and bio-evaluation

药效团 虚拟筛选 贾纳斯激酶 计算生物学 计算机科学 对接(动物) 激酶 机器学习 化学 人工智能 生物化学 生物 医学 护理部
作者
Zixiao Wang,Lili Sun,Yu Xu,Peida Liang,Kaiyan Xu,Jing Huang
出处
期刊:Journal of Translational Medicine [Springer Nature]
卷期号:21 (1) 被引量:4
标识
DOI:10.1186/s12967-023-04443-6
摘要

Janus kinase 1 (JAK1) plays a critical role in most cytokine-mediated inflammatory, autoimmune responses and various cancers via the JAK/STAT signaling pathway. Inhibition of JAK1 is therefore an attractive therapeutic strategy for several diseases. Recently, high-performance machine learning techniques have been increasingly applied in virtual screening to develop new kinase inhibitors. Our study aimed to develop a novel layered virtual screening method based on machine learning (ML) and pharmacophore models to identify the potential JAK1 inhibitors.Firstly, we constructed a high-quality dataset comprising 3834 JAK1 inhibitors and 12,230 decoys, followed by establishing a series of classification models based on a combination of three molecular descriptors and six ML algorithms. To further screen potential compounds, we constructed several pharmacophore models based on Hiphop and receptor-ligand algorithms. We then used molecular docking to filter the recognized compounds. Finally, the binding stability and enzyme inhibition activity of the identified compounds were assessed by molecular dynamics (MD) simulations and in vitro enzyme activity tests.The best performance ML model DNN-ECFP4 and two pharmacophore models Hiphop3 and 6TPF 08 were utilized to screen the ZINC database. A total of 13 potentially active compounds were screened and the MD results demonstrated that all of the above molecules could bind with JAK1 stably in dynamic conditions. Among the shortlisted compounds, the four purchasable compounds demonstrated significant kinase inhibition activity, with Z-10 being the most active (IC50 = 194.9 nM).The current study provides an efficient and accurate integrated model. The hit compounds were promising candidates for the further development of novel JAK1 inhibitors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
研友_QQC完成签到,获得积分10
1秒前
NeuroWhite完成签到,获得积分10
1秒前
1秒前
搜索v完成签到,获得积分10
2秒前
liuchuck完成签到 ,获得积分10
2秒前
2秒前
2秒前
猫独秀完成签到,获得积分10
2秒前
4秒前
buno应助yuefeng采纳,获得10
4秒前
yiming完成签到,获得积分10
4秒前
落落发布了新的文献求助10
5秒前
清秋若月完成签到 ,获得积分10
5秒前
5秒前
呵呵呵呵完成签到,获得积分10
6秒前
6秒前
远方发布了新的文献求助10
7秒前
zxc111关注了科研通微信公众号
7秒前
8秒前
nanhe698发布了新的文献求助10
8秒前
Huang完成签到,获得积分10
8秒前
碳土不凡完成签到 ,获得积分10
9秒前
9秒前
淡淡采白发布了新的文献求助10
10秒前
10秒前
11秒前
Akim应助dingdong采纳,获得10
11秒前
11秒前
11秒前
satchzhao发布了新的文献求助10
11秒前
可爱的函函应助尺素寸心采纳,获得10
11秒前
66发布了新的文献求助10
12秒前
一鸣完成签到,获得积分10
12秒前
12秒前
ding应助呵呵呵呵采纳,获得10
12秒前
12秒前
汉堡包应助hkxfg采纳,获得10
14秒前
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808