CTACL:Hyperspectral Image Change Detection Based on Adaptive Contrastive Learning

高光谱成像 计算机科学 人工智能 卷积神经网络 模式识别(心理学) 特征学习 变更检测 特征提取
作者
Shengwei Tian,Xiangrong Zhang,Guanchun Wang,Xiao Han,Puhua Chen,Xina Cheng
标识
DOI:10.1109/igarss52108.2023.10282489
摘要

Hyperspectral image change detection (HSI-CD) can accurately identify changing regions by capturing subtle spectral differences and has become a research hotspot in the field of remote sensing (RS). Convolutional neural networks (CNNs) have excellent local context modeling capabilities and have been proven to be powerful feature extractors in HSI-CD. However, due to its inherent network structure limitation, CNN cannot well mine and represent the sequential properties of spectral features, especially the medium and long-term dependencies. In contrast, transformer-based network architecture shows a strong ability to model long-distance dependencies, which can fully mine and extract global features, but exhibits weak performance in extracting local information. To this end, we propose HSI-CD network based on adaptive contrastive learning (CTACL). Specifically, we first propose a parallel network of CNNs and transformers to mine local and global temporal-spatial-spectral features of HSI, respectively. Second, we propose adaptive contrastive learning to pre-train the network to learn the latent features of a large amount of unlabeled data and better mine and utilize local and global information. Experimental results on the farmland dataset show that the proposed method performs well.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
orixero应助科研通管家采纳,获得10
2秒前
乐观小之应助科研通管家采纳,获得10
2秒前
隐形曼青应助科研通管家采纳,获得10
2秒前
大个应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
思源应助科研通管家采纳,获得50
2秒前
2秒前
2秒前
鸣笛应助科研通管家采纳,获得30
2秒前
2秒前
2秒前
2秒前
3秒前
勤劳的小牛蛙应助某慧采纳,获得10
4秒前
4秒前
YYYZZX1发布了新的文献求助10
5秒前
wss发布了新的文献求助10
6秒前
6秒前
7秒前
田様应助Yang采纳,获得10
7秒前
7秒前
风中垣完成签到,获得积分10
8秒前
阿毛发布了新的文献求助10
9秒前
么么蛋发布了新的文献求助10
10秒前
赘婿应助XCHI采纳,获得10
10秒前
11秒前
222发布了新的文献求助10
11秒前
林间清晨完成签到 ,获得积分10
14秒前
14秒前
14秒前
15秒前
16秒前
彭于晏应助YYYZZX1采纳,获得10
16秒前
Yanle完成签到 ,获得积分10
16秒前
17秒前
张任的die发布了新的文献求助10
17秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952868
求助须知:如何正确求助?哪些是违规求助? 3498265
关于积分的说明 11091271
捐赠科研通 3228897
什么是DOI,文献DOI怎么找? 1785147
邀请新用户注册赠送积分活动 869190
科研通“疑难数据库(出版商)”最低求助积分说明 801367