Multispectral and Hyperspectral Image Fusion Based on Coupled Non-Negative Block Term Tensor Decomposition with Joint Structured Sparsity

端元 高光谱成像 多光谱图像 计算机科学 人工智能 秩(图论) 模式识别(心理学) 基质(化学分析) 矩阵分解 算法 数学 化学 特征向量 物理 组合数学 量子力学 色谱法
作者
Hao Guo,Wenxing Bao,Wei Feng,Shasha Sun,Lei Yang,Kewen Qu,Xuan Ma,Xiaowu Zhang
标识
DOI:10.1109/igarss52108.2023.10282402
摘要

Multispectral and hyperspectral image fusion (MHF) aims to reconstruct high-resolution hyperspectral images by fusing spatial and spectral information. The block-item tensor fusion model is able to use endmember and abundance information to improve the quality of hyperspectral images. This paper implements image fusion based on a coupled non-negative block term tensor decomposition model. Firstly, the two abundance matrices are formed into a chunking matrix and L 2,1 -parametric is added as well, promoting structured sparsity and eliminating the scaling effect present in the model. Immediately after, the counter-scaling effect present in the model is eliminated by adding a L 2 -parametric number to the endmember matrix. Finally, the focus is on solving the noise/artifacts generated by the no exact estimation of rank in the model, and over-estimation of rank by coupling the chunking matrix and the endmember matrix together to reconstruct the matrix, adding L 2,1 -parameters to it to facilitate the elimination of chunks, and solving the problems using an extended iteratively reweighted least squares (IRLS) method. The experiments on the University of Pavia dataset show that the proposed algorithm works better compared to the state of the art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Owen应助鑫鑫采纳,获得10
1秒前
隐形曼青应助wao采纳,获得10
1秒前
鸣笛应助搞怪隶采纳,获得10
1秒前
2秒前
liangzi107655发布了新的文献求助10
2秒前
科研通AI6应助xxx采纳,获得10
2秒前
吕倩发布了新的文献求助10
3秒前
李健的小迷弟应助奉年采纳,获得10
3秒前
4秒前
5秒前
5秒前
困困困困发布了新的文献求助10
5秒前
小黄包子完成签到,获得积分10
5秒前
6秒前
7秒前
7秒前
7秒前
zaizai完成签到,获得积分10
7秒前
上官若男应助tuyfytjt采纳,获得10
7秒前
研友_Z60ObL完成签到,获得积分10
8秒前
小蘑菇应助欢呼尔烟采纳,获得10
8秒前
周宇飞发布了新的文献求助20
8秒前
败者食尘完成签到,获得积分10
9秒前
科目三应助nan采纳,获得10
9秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
彭于晏应助mumu采纳,获得10
9秒前
李爱国应助Fareth采纳,获得10
10秒前
聪慧小霜应助zfcaabbcc采纳,获得10
10秒前
momo发布了新的文献求助10
10秒前
申左一发布了新的文献求助10
10秒前
ZYH发布了新的文献求助10
11秒前
KK发布了新的文献求助10
11秒前
斯文败类应助shusen采纳,获得10
11秒前
11秒前
lincool完成签到,获得积分10
12秒前
ldkl应助收手吧大哥采纳,获得30
12秒前
完美世界应助haoqisheng采纳,获得10
12秒前
小马甲应助郑zz采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4576354
求助须知:如何正确求助?哪些是违规求助? 3995613
关于积分的说明 12369373
捐赠科研通 3669547
什么是DOI,文献DOI怎么找? 2022294
邀请新用户注册赠送积分活动 1056342
科研通“疑难数据库(出版商)”最低求助积分说明 943562