已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

SSMU-Net: A Style Separation and Mode Unification Network for Multimodal Remote Sensing Image Classification

计算机科学 全色胶片 统一 人工智能 高光谱成像 多光谱图像 利用 模式识别(心理学) 模式(计算机接口) 数据挖掘 计算机安全 操作系统 程序设计语言
作者
Yi Han,Hao Zhu,Licheng Jiao,Xiaoyu Yi,Xiaotong Li,Biao Hou,Wenping Ma,Shuang Wang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-15 被引量:5
标识
DOI:10.1109/tgrs.2023.3321729
摘要

The rapid progress in remote sensing technology has made it convenient for satellites to capture both multispectral (MS) and panchromatic (PAN) images. MS has more spectral information, and PAN has higher spatial resolution. How to exploit the complementarity between MS and PAN images, and effectively combine their respective advantageous features while alleviating mode differences, has become a crucial research task. This paper designs a Style Separation and Mode Unification network (SSMU-Net) for MS and PAN image classification from a novel and effective perspective. The network can be divided into two stages: style separation and mode unification. In the style separation stage, we use wavelet decomposition and techniques similar to generative adversarial networks to preliminarily separate the information of MS and PAN into different components. These components better preserve complete information from the original data and have their own advantages in style and content. Then we propose a Symmetrical Triplet Traction module to perform style traction on different components, making style features more unique and content features more unified, achieving feature separation and purification. In the mode unification stage, we design an encoder-decoder model to reduce the impact of mode differences. The experimental results from multiple datasets validate the effectiveness of our proposed method. Our overall accuracy improved by approximately 4% on the Shanghai and Beijing datasets, and it has exceeded 99.28% on the Hohhot and Vancouver datasets. Our code is available at: https://github.com/proudpie/SSMU-Net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Wilddeer完成签到 ,获得积分10
刚刚
1秒前
midokaori发布了新的文献求助10
2秒前
一颗有理想的蛋完成签到 ,获得积分10
2秒前
凡迪亚比给罗小球的求助进行了留言
4秒前
5秒前
共享精神应助知性的采珊采纳,获得10
6秒前
8秒前
顾矜应助andrele采纳,获得30
12秒前
12秒前
呵呵哒发布了新的文献求助10
13秒前
hhchhcmxhf发布了新的文献求助10
15秒前
Owen应助shinhee采纳,获得10
15秒前
量子星尘发布了新的文献求助10
16秒前
16秒前
18秒前
会撒娇的含巧完成签到,获得积分10
18秒前
19秒前
乐乐应助科研通管家采纳,获得10
22秒前
orixero应助科研通管家采纳,获得10
22秒前
乐乐应助科研通管家采纳,获得30
22秒前
hello2001发布了新的文献求助10
24秒前
grace完成签到 ,获得积分10
24秒前
香蕉觅云应助飞逝的冥想采纳,获得10
25秒前
27秒前
29秒前
memory完成签到,获得积分10
29秒前
忧郁的寻冬完成签到,获得积分10
31秒前
32秒前
32秒前
sxt发布了新的文献求助10
33秒前
33秒前
33秒前
33秒前
33秒前
33秒前
8R60d8应助荔枝采纳,获得10
36秒前
匆匆完成签到,获得积分0
37秒前
37秒前
Rondab应助负责冰凡采纳,获得10
38秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956896
求助须知:如何正确求助?哪些是违规求助? 3502967
关于积分的说明 11110753
捐赠科研通 3233948
什么是DOI,文献DOI怎么找? 1787671
邀请新用户注册赠送积分活动 870713
科研通“疑难数据库(出版商)”最低求助积分说明 802210