SSMU-Net: A Style Separation and Mode Unification Network for Multimodal Remote Sensing Image Classification

计算机科学 全色胶片 统一 人工智能 高光谱成像 多光谱图像 利用 模式识别(心理学) 特征提取 数据挖掘 计算机安全 程序设计语言
作者
Yu Han,Hao Zhu,Licheng Jiao,Xiaoyu Yi,Xiaotong Li,Biao Hou,Wenping Ma,Shuang Wang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-15
标识
DOI:10.1109/tgrs.2023.3321729
摘要

The rapid progress in remote sensing technology has made it convenient for satellites to capture both multispectral (MS) and panchromatic (PAN) images. MS has more spectral information, and PAN has higher spatial resolution. How to exploit the complementarity between MS and PAN images, and effectively combine their respective advantageous features while alleviating mode differences, has become a crucial research task. This paper designs a Style Separation and Mode Unification network (SSMU-Net) for MS and PAN image classification from a novel and effective perspective. The network can be divided into two stages: style separation and mode unification. In the style separation stage, we use wavelet decomposition and techniques similar to generative adversarial networks to preliminarily separate the information of MS and PAN into different components. These components better preserve complete information from the original data and have their own advantages in style and content. Then we propose a Symmetrical Triplet Traction module to perform style traction on different components, making style features more unique and content features more unified, achieving feature separation and purification. In the mode unification stage, we design an encoder-decoder model to reduce the impact of mode differences. The experimental results from multiple datasets validate the effectiveness of our proposed method. Our overall accuracy improved by approximately 4% on the Shanghai and Beijing datasets, and it has exceeded 99.28% on the Hohhot and Vancouver datasets. Our code is available at: https://github.com/proudpie/SSMU-Net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
明理鱼完成签到,获得积分10
1秒前
Yolo发布了新的文献求助10
1秒前
KK完成签到,获得积分10
1秒前
花开富贵完成签到,获得积分10
1秒前
2秒前
3秒前
4秒前
害羞的火龙果完成签到,获得积分10
4秒前
完美世界应助解冰凡采纳,获得10
4秒前
Summer完成签到,获得积分10
5秒前
36456657应助囡囡采纳,获得10
6秒前
6秒前
psclib发布了新的文献求助10
6秒前
搜集达人应助zyh采纳,获得10
7秒前
张婷婷发布了新的文献求助10
7秒前
希望天下0贩的0应助Echo采纳,获得10
7秒前
在水一方应助Aprial采纳,获得10
8秒前
丁娜完成签到,获得积分10
8秒前
快去读文献完成签到,获得积分10
8秒前
36456657发布了新的文献求助10
8秒前
9秒前
王电催化发布了新的文献求助10
9秒前
简单的paper应助Hyunstar采纳,获得10
9秒前
10秒前
1256完成签到,获得积分10
10秒前
Gilana发布了新的文献求助30
10秒前
正电荷发布了新的文献求助10
10秒前
szyt4018完成签到,获得积分20
11秒前
单纯水风完成签到,获得积分10
11秒前
帅气的Bond完成签到,获得积分20
11秒前
EBA应助久伴久爱采纳,获得10
12秒前
芝士球球完成签到,获得积分10
12秒前
zxlllll发布了新的文献求助10
12秒前
12秒前
CipherSage应助气魄和图采纳,获得10
13秒前
13秒前
13秒前
14秒前
14秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3230133
求助须知:如何正确求助?哪些是违规求助? 2877796
关于积分的说明 8201607
捐赠科研通 2545066
什么是DOI,文献DOI怎么找? 1374828
科研通“疑难数据库(出版商)”最低求助积分说明 647143
邀请新用户注册赠送积分活动 621973