Toward Autonomous Multi-UAV Wireless Network: A Survey of Reinforcement Learning-Based Approaches

计算机科学 强化学习 无线网络 背景(考古学) 无人机 无线 开放式研究 桥(图论) 资源(消歧) 计算机网络 人工智能 电信 医学 古生物学 遗传学 万维网 内科学 生物
作者
Yu Bai,Huijun Zhao,X. L. Zhang,Zheng Chang,Riku Jäntti,Kun Yang
出处
期刊:IEEE Communications Surveys and Tutorials [Institute of Electrical and Electronics Engineers]
卷期号:25 (4): 3038-3067 被引量:48
标识
DOI:10.1109/comst.2023.3323344
摘要

Unmanned aerial vehicle (UAV)-based wireless networks have received increasing research interest in recent years and are gradually being utilized in various aspects of our society. The growing complexity of UAV applications such as disaster management, plant protection, and environment monitoring, has resulted in escalating and stringent requirements for UAV networks that a single UAV cannot fulfill. To address this, multi-UAV wireless networks (MUWNs) have emerged, offering enhanced resource-carrying capacity and enabling collaborative mission completion by multiple UAVs. However, the effective operation of MUWNs necessitates a higher level of autonomy and intelligence, particularly in decision-making and multi-objective optimization under diverse environmental conditions. Reinforcement Learning (RL), an intelligent and goal-oriented decision-making approach, has emerged as a promising solution for addressing the intricate tasks associated with MUWNs. As one may notice, the literature still lacks a comprehensive survey of recent advancements in RL-based MUWNs. Thus, this paper aims to bridge this gap by providing a comprehensive review of RL-based approaches in the context of autonomous MUWNs. We present an informative overview of RL and demonstrate its application within the framework of MUWNs. Specifically, we summarize various applications of RL in MUWNs, including data access, sensing and collection, resource allocation for wireless connectivity, UAV-assisted mobile edge computing, localization, trajectory planning, and network security. Furthermore, we identify and discuss several open challenges based on the insights gained from our review.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
记忆超群完成签到,获得积分10
1秒前
小熊完成签到,获得积分10
2秒前
Keming完成签到,获得积分10
3秒前
淡淡菠萝完成签到 ,获得积分10
3秒前
无花果应助迷路的菲音采纳,获得10
3秒前
jxx发布了新的文献求助20
4秒前
情怀应助熊小熊XIONG采纳,获得10
4秒前
一颗西柚完成签到 ,获得积分10
4秒前
kkjay完成签到 ,获得积分10
5秒前
5秒前
好好完成签到,获得积分10
6秒前
LOST完成签到 ,获得积分10
6秒前
猪肉超人菜婴蚊完成签到,获得积分10
6秒前
脑洞疼应助NZH采纳,获得10
7秒前
7秒前
7秒前
wdw2501完成签到,获得积分20
7秒前
懒懒洋洋洋完成签到,获得积分10
9秒前
开天神秀完成签到,获得积分10
10秒前
liuce0307完成签到,获得积分10
10秒前
英勇半兰完成签到,获得积分20
11秒前
丘比特应助张磊采纳,获得10
12秒前
啊娴仔发布了新的文献求助10
12秒前
落寞的新之完成签到,获得积分10
12秒前
liutaili发布了新的文献求助10
13秒前
太阳雨完成签到 ,获得积分10
13秒前
月亮打盹儿完成签到,获得积分10
14秒前
记号完成签到,获得积分10
15秒前
16秒前
YORLAN完成签到 ,获得积分10
16秒前
caiqinghua888888完成签到,获得积分10
16秒前
危机的娩发布了新的文献求助10
17秒前
飞想思完成签到,获得积分10
17秒前
17秒前
18秒前
小红花完成签到,获得积分10
18秒前
18秒前
阳光曼冬发布了新的文献求助10
19秒前
tt发布了新的文献求助10
20秒前
MY完成签到,获得积分10
20秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3245070
求助须知:如何正确求助?哪些是违规求助? 2888780
关于积分的说明 8255477
捐赠科研通 2557124
什么是DOI,文献DOI怎么找? 1385882
科研通“疑难数据库(出版商)”最低求助积分说明 650248
邀请新用户注册赠送积分活动 626457