Automated reading passage generation with OpenAI's large language model

可读性 计算机科学 阅读(过程) 人工智能 自然语言处理 变压器 可扩展性 机器学习 程序设计语言 工程类 语言学 数据库 哲学 电压 电气工程
作者
Ummugul Bezirhan,Matthias von Davier
出处
期刊:Computers & Education: Artificial Intelligence [Elsevier]
卷期号:5: 100161-100161 被引量:28
标识
DOI:10.1016/j.caeai.2023.100161
摘要

The widespread usage of computer-based assessments and individualized learning platforms has increased demand for the rapid production of high-quality items. Automated item generation (AIG), the process of using item models to generate new items with the help of computer technology, was proposed to reduce reliance on human subject experts. While AIG has been used in test development, recent advances in machine learning algorithms offer the potential to enhance its efficiency further. This paper presents an innovative approach utilizing OpenAI's latest transformer-based language model, GPT-3, to generate reading passages. Existing reading passages were used in carefully engineered prompts to ensure the AI-generated text has similar content and structure to a fourth-grade reading passage. Multiple passages were generated for each prompt, and the final passage was selected based on Lexile score agreement with the original passage. To ensure accuracy, a human editor conducted a simple revision of the chosen passage, correcting any grammatical and factual errors. To evaluate the effectiveness of the AI-generated passages, human judges assessed their coherence and appropriateness for fourth-grade readers. The results indicated that GPT-3-produced passages closely resembled human-authored passages regarding coherence, appropriateness, and readability for the target audience. By combining GPT-3's capabilities with carefully designed prompts and human editing, this study demonstrates an efficient and effective method for generating reading passages. The findings highlight the potential of incorporating large language models into automated item generation, contributing to improved scalability and quality in educational assessment development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
慕青应助Fonxi采纳,获得10
2秒前
3秒前
hyPang完成签到,获得积分10
3秒前
4秒前
马宇驰发布了新的文献求助10
4秒前
5秒前
科研通AI2S应助安详香水采纳,获得10
5秒前
欣慰的夏彤应助yuhui采纳,获得30
5秒前
6秒前
123发布了新的文献求助20
7秒前
缝纫工发布了新的文献求助10
7秒前
7秒前
安静真发布了新的文献求助10
9秒前
10秒前
金平卢仙发布了新的文献求助10
11秒前
发顶刊完成签到,获得积分10
11秒前
whisper完成签到,获得积分10
12秒前
12秒前
14秒前
量子星尘发布了新的文献求助10
17秒前
17秒前
18秒前
18秒前
木木发布了新的文献求助10
18秒前
汉堡包应助dsy采纳,获得10
18秒前
19秒前
Jeff发布了新的文献求助10
20秒前
啦啦啦啦啦啦啦完成签到,获得积分10
21秒前
21秒前
22秒前
共享精神应助午午采纳,获得30
22秒前
Logan应助ELiaukoay采纳,获得10
23秒前
不安的香菇完成签到,获得积分10
23秒前
23秒前
23秒前
量子星尘发布了新的文献求助10
24秒前
24秒前
无名花香完成签到,获得积分10
25秒前
abjz完成签到,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5770876
求助须知:如何正确求助?哪些是违规求助? 5588215
关于积分的说明 15425761
捐赠科研通 4904256
什么是DOI,文献DOI怎么找? 2638647
邀请新用户注册赠送积分活动 1586521
关于科研通互助平台的介绍 1541641