Functional Nonlinear Learning

函数主成分分析 功能数据分析 主成分分析 计算机科学 多元统计 一般化 非线性系统 人工智能 代表(政治) 模式识别(心理学) 数据挖掘 机器学习 数学 数学分析 物理 量子力学 政治 政治学 法学
作者
Haixu Wang,Jiguo Cao
出处
期刊:Journal of Computational and Graphical Statistics [Taylor & Francis]
卷期号:33 (1): 181-191 被引量:2
标识
DOI:10.1080/10618600.2023.2233581
摘要

AbstractUsing representations of functional data can be more convenient and beneficial in subsequent statistical models than direct observations. These representations, in a lower-dimensional space, extract and compress information from individual curves. The existing representation learning approaches in functional data analysis usually use linear mapping in parallel to those from multivariate analysis, for example, functional principal component analysis (FPCA). However, functions, as infinite-dimensional objects, sometimes have nonlinear structures that cannot be uncovered by linear mapping. Linear methods will be more overwhelmed by multivariate functional data. For that matter, this article proposes a functional nonlinear learning (FunNoL) method to sufficiently represent multivariate functional data in a lower-dimensional feature space. Furthermore, we merge a classification model for enriching the ability of representations in predicting curve labels. Hence, representations from FunNoL can be used for both curve reconstruction and classification. Additionally, we have endowed the proposed model with the ability to address the missing observation problem as well as to further denoise observations. The resulting representations are robust to observations that are locally disturbed by uncontrollable random noises. We apply the proposed FunNoL method to several real datasets and show that FunNoL can achieve better classifications than FPCA, especially in the multivariate functional data setting. Simulation studies have shown that FunNoL provides satisfactory curve classification and reconstruction regardless of data sparsity. Supplementary materials for this article are available online.Keywords: Curve classificationFeature mappingFunctional data analysisNeural networks Supplementary MaterialsA supplementary document includes the additional application and simulation results, proofs of the generalization bound, and some technical details.AcknowledgmentsThe authors would like to thank the editor, the associate editor, and one referee for many insightful comments. These comments are very helpful for us to improve our work.Disclosure StatementThe authors report there are no competing interests to declare.Additional informationFundingThis research is supported by the Discovery grant (RGPIN-2023-04057) to J.Cao from the Natural Sciences and Engineering Research Council of Canada (NSERC).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
害羞的紫伊完成签到,获得积分10
5秒前
乐乐应助zhang采纳,获得10
6秒前
zero1832发布了新的文献求助10
8秒前
jenningseastera应助pu采纳,获得10
8秒前
wang完成签到,获得积分10
9秒前
9秒前
10秒前
11秒前
爱看文献的芝加哥完成签到,获得积分10
11秒前
bc举报木木三求助涉嫌违规
14秒前
星辰大海应助rong采纳,获得10
18秒前
共享精神应助12采纳,获得10
19秒前
19秒前
Rollroll完成签到,获得积分10
19秒前
ding应助fei190813采纳,获得10
23秒前
23秒前
FashionBoy应助叮叮采纳,获得10
25秒前
26秒前
007完成签到,获得积分10
26秒前
30秒前
31秒前
31秒前
31秒前
大笨笨完成签到,获得积分10
37秒前
fei190813发布了新的文献求助10
37秒前
叮叮发布了新的文献求助10
37秒前
38秒前
38秒前
41秒前
rong发布了新的文献求助10
44秒前
和谐沛芹发布了新的文献求助10
46秒前
Cherish应助Abi采纳,获得10
46秒前
50秒前
50秒前
mky发布了新的文献求助10
51秒前
hana应助猜不猜不采纳,获得10
1分钟前
墨殇完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
T/CAB 0344-2024 重组人源化胶原蛋白内毒素去除方法 1000
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3775459
求助须知:如何正确求助?哪些是违规求助? 3321170
关于积分的说明 10203710
捐赠科研通 3035997
什么是DOI,文献DOI怎么找? 1665905
邀请新用户注册赠送积分活动 797196
科研通“疑难数据库(出版商)”最低求助积分说明 757766