Self-supervised pseudo multi-class pre-training for unsupervised anomaly detection and segmentation in medical images

人工智能 计算机科学 模式识别(心理学) 异常检测 分割 班级(哲学) 特征(语言学) 图像(数学) 计算机视觉 哲学 语言学
作者
Yu Tian,Fengbei Liu,Guansong Pang,Yuanhong Chen,Yuyuan Liu,Johan Verjans,Rajvinder Singh,Gustavo Carneiro
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:90: 102930-102930
标识
DOI:10.1016/j.media.2023.102930
摘要

Unsupervised anomaly detection (UAD) methods are trained with normal (or healthy) images only, but during testing, they are able to classify normal and abnormal (or disease) images. UAD is an important medical image analysis (MIA) method to be applied in disease screening problems because the training sets available for those problems usually contain only normal images. However, the exclusive reliance on normal images may result in the learning of ineffective low-dimensional image representations that are not sensitive enough to detect and segment unseen abnormal lesions of varying size, appearance, and shape. Pre-training UAD methods with self-supervised learning, based on computer vision techniques, can mitigate this challenge, but they are sub-optimal because they do not explore domain knowledge for designing the pretext tasks, and their contrastive learning losses do not try to cluster the normal training images, which may result in a sparse distribution of normal images that is ineffective for anomaly detection. In this paper, we propose a new self-supervised pre-training method for MIA UAD applications, named Pseudo Multi-class Strong Augmentation via Contrastive Learning (PMSACL). PMSACL consists of a novel optimisation method that contrasts a normal image class from multiple pseudo classes of synthesised abnormal images, with each class enforced to form a dense cluster in the feature space. In the experiments, we show that our PMSACL pre-training improves the accuracy of SOTA UAD methods on many MIA benchmarks using colonoscopy, fundus screening and Covid-19 Chest X-ray datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
qsbss发布了新的文献求助30
1秒前
有哪些并发症完成签到,获得积分10
2秒前
3秒前
xuulanni发布了新的文献求助10
3秒前
liuxinyu发布了新的文献求助10
4秒前
三二十一发布了新的文献求助10
4秒前
活泼的冬寒完成签到,获得积分10
4秒前
VLH发布了新的文献求助10
5秒前
5秒前
小毛毛发布了新的文献求助30
8秒前
代代完成签到,获得积分20
9秒前
987发布了新的文献求助10
10秒前
11秒前
Awei完成签到,获得积分10
12秒前
Lotus发布了新的文献求助10
15秒前
luogan发布了新的文献求助10
17秒前
隐形曼青应助耍酷的千儿采纳,获得10
17秒前
完美世界应助987采纳,获得10
19秒前
文瑄完成签到 ,获得积分10
19秒前
Damon完成签到,获得积分10
20秒前
miraclehit完成签到,获得积分10
20秒前
21秒前
现代飞鸟完成签到,获得积分10
21秒前
上官若男应助会飞的猪采纳,获得10
21秒前
21秒前
Angie完成签到,获得积分10
24秒前
25秒前
心房子发布了新的文献求助10
26秒前
漂亮板栗完成签到 ,获得积分10
26秒前
Angie发布了新的文献求助10
28秒前
28秒前
28秒前
庸尘完成签到,获得积分10
28秒前
冷漠的布丁完成签到,获得积分10
28秒前
Hello应助归海凡儿采纳,获得10
29秒前
29秒前
30秒前
30秒前
30秒前
高分求助中
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
Relativism, Conceptual Schemes, and Categorical Frameworks 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3462498
求助须知:如何正确求助?哪些是违规求助? 3056032
关于积分的说明 9050314
捐赠科研通 2745649
什么是DOI,文献DOI怎么找? 1506464
科研通“疑难数据库(出版商)”最低求助积分说明 696141
邀请新用户注册赠送积分活动 695654