Self-supervised pseudo multi-class pre-training for unsupervised anomaly detection and segmentation in medical images

人工智能 计算机科学 模式识别(心理学) 异常检测 分割 班级(哲学) 特征(语言学) 图像(数学) 计算机视觉 哲学 语言学
作者
Yu Tian,Fengbei Liu,Guansong Pang,Yuanhong Chen,Yuyuan Liu,Johan Verjans,Rajvinder Singh,Gustavo Carneiro
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:90: 102930-102930
标识
DOI:10.1016/j.media.2023.102930
摘要

Unsupervised anomaly detection (UAD) methods are trained with normal (or healthy) images only, but during testing, they are able to classify normal and abnormal (or disease) images. UAD is an important medical image analysis (MIA) method to be applied in disease screening problems because the training sets available for those problems usually contain only normal images. However, the exclusive reliance on normal images may result in the learning of ineffective low-dimensional image representations that are not sensitive enough to detect and segment unseen abnormal lesions of varying size, appearance, and shape. Pre-training UAD methods with self-supervised learning, based on computer vision techniques, can mitigate this challenge, but they are sub-optimal because they do not explore domain knowledge for designing the pretext tasks, and their contrastive learning losses do not try to cluster the normal training images, which may result in a sparse distribution of normal images that is ineffective for anomaly detection. In this paper, we propose a new self-supervised pre-training method for MIA UAD applications, named Pseudo Multi-class Strong Augmentation via Contrastive Learning (PMSACL). PMSACL consists of a novel optimisation method that contrasts a normal image class from multiple pseudo classes of synthesised abnormal images, with each class enforced to form a dense cluster in the feature space. In the experiments, we show that our PMSACL pre-training improves the accuracy of SOTA UAD methods on many MIA benchmarks using colonoscopy, fundus screening and Covid-19 Chest X-ray datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
精灵发布了新的文献求助10
刚刚
李爱国应助苯基乙胺采纳,获得10
2秒前
CipherSage应助故意的怜晴采纳,获得10
3秒前
烟花应助灼灼朗朗采纳,获得10
4秒前
英俊的铭应助无舟采纳,获得10
5秒前
5秒前
虚幻赛凤完成签到,获得积分10
6秒前
6秒前
有为发布了新的文献求助10
7秒前
David完成签到,获得积分10
7秒前
9秒前
光亮笑柳完成签到,获得积分10
9秒前
juwish完成签到,获得积分10
9秒前
10秒前
11秒前
12秒前
wgt完成签到,获得积分20
13秒前
同屋如光发布了新的文献求助10
14秒前
gy发布了新的文献求助10
14秒前
14秒前
14秒前
昭谏完成签到,获得积分10
15秒前
巴卫发布了新的文献求助10
16秒前
自然的青筠完成签到,获得积分10
16秒前
缓慢念云发布了新的文献求助10
16秒前
18秒前
20秒前
21秒前
22秒前
22秒前
GISerTina应助111采纳,获得20
22秒前
ljz发布了新的文献求助10
23秒前
怕黑的静蕾应助同屋如光采纳,获得10
23秒前
缓慢念云完成签到,获得积分10
23秒前
海东来应助一一采纳,获得30
23秒前
24秒前
25秒前
灼灼朗朗发布了新的文献求助10
25秒前
26秒前
生姜发布了新的文献求助10
26秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966681
求助须知:如何正确求助?哪些是违规求助? 3512158
关于积分的说明 11162133
捐赠科研通 3247021
什么是DOI,文献DOI怎么找? 1793676
邀请新用户注册赠送积分活动 874532
科研通“疑难数据库(出版商)”最低求助积分说明 804421