医学
人口
肌钙蛋白
病理
生物
基因表达
血清反应因子
基因
遗传学
环境卫生
作者
Yongting Luo,Junjie Luo,Peng An,Yuanfei Zhao,Wenting Zhao,Zhou Fang,Yi Xia,Lin Zhu,Xu Teng,Xu Zhang,Shuaishuai Zhou,Mingyan Yang,Jiayao Li,Junming Zhu,Yongmin Liu,Haiyang Li,Ming Gong,Yuyong Liu,Jie Han,Huiyuan Guo,Hongjia Zhang,Wenjian Jiang,Fazheng Ren
标识
DOI:10.1093/eurheartj/ehad534
摘要
Abstract Background and Aims Stanford type A aortic dissection (AD) is a degenerative aortic remodelling disease marked by an exceedingly high mortality without effective pharmacologic therapies. Smooth muscle cells (SMCs) lining tunica media adopt a range of states, and their transformation from contractile to synthetic phenotypes fundamentally triggers AD. However, the underlying pathomechanisms governing this population shift and subsequent AD, particularly at distinct disease temporal stages, remain elusive. Methods Ascending aortas from nine patients undergoing ascending aorta replacement and five individuals undergoing heart transplantation were subjected to single-cell RNA sequencing. The pathogenic targets governing the phenotypic switch of SMCs were identified by trajectory inference, functional scoring, single-cell regulatory network inference and clustering, regulon, and interactome analyses and confirmed using human ascending aortas, primary SMCs, and a β-aminopropionitrile monofumarate–induced AD model. Results The transcriptional profiles of 93 397 cells revealed a dynamic temporal-specific phenotypic transition and marked elevation of the activator protein-1 (AP-1) complex, actively enabling synthetic SMC expansion. Mechanistically, tumour necrosis factor signalling enhanced AP-1 transcriptional activity by dampening mitochondrial oxidative phosphorylation (OXPHOS). Targeting this axis with the OXPHOS enhancer coenzyme Q10 or AP-1-specific inhibitor T-5224 impedes phenotypic transition and aortic degeneration while improving survival by 42.88% (58.3%–83.3% for coenzyme Q10 treatment), 150.15% (33.3%–83.3% for 2-week T-5224), and 175.38% (33.3%–91.7% for 3-week T-5224) in the β-aminopropionitrile monofumarate–induced AD model. Conclusions This cross-sectional compendium of cellular atlas of human ascending aortas during AD progression provides previously unappreciated insights into a transcriptional programme permitting aortic degeneration, highlighting a translational proof of concept for an anti-remodelling intervention as an attractive strategy to manage temporal-specific AD by modulating the tumour necrosis factor–OXPHOS–AP-1 axis.
科研通智能强力驱动
Strongly Powered by AbleSci AI