响应度
光探测
材料科学
光电子学
可见光谱
光电探测器
紫外线
吸收(声学)
波长
光学
物理
复合材料
作者
Zhitao Shao,Lihang Qu,Mengqi Cui,Jianhua Yao,Feng Gao,Wei Feng,Huiqing Lu
标识
DOI:10.1021/acsami.3c08077
摘要
The exploration and development of self-powered visible-blind ultraviolet photodetectors (VBUV PDs) with high responsivity and wavelength selectivity have far-reaching significance for versatile applications. Although In2O3 shows potential for UV detection due to good UV absorption and electrical transport properties, the poor wavelength selectivity impedes further application in VBUV PDs. Here, a self-powered photoelectrochemical-type (PEC) VBUV PD is demonstrated by using gallium-indium oxide alloys (Ga-In OAs). The self-powered Ga-In OAs-based PEC VBUV PDs exhibit good VBUV photodetection performance, including a high responsivity of 50.04 mA/W and a high detectivity of 6.03 × 1010 Jones under 254 nm light irradiation, a good wavelength selectivity (UV/visible light rejection ratio of 262.45), and a fast response time (0.45/0.38 s). The good self-powered VBUV detection performance of Ga-In OAs is attributed to the larger band gap and smaller charge-transfer resistance induced by alloy engineering, which not only suppresses the absorption of visible light but also accelerates interfacial charge transfer. Moreover, an underwater optical communication system is demonstrated by using the self-powered Ga-In OAs PEC VBUV PDs. This study demonstrates that alloy engineering is a powerful tool to improve the performance of In2O3-based PEC PDs, and Ga-In OAs have great application potential for underwater optoelectronic devices.
科研通智能强力驱动
Strongly Powered by AbleSci AI