卤化物
材料科学
电解质
电化学
离子
金属卤化物
电导率
化学物理
无机化学
电极
物理化学
化学
有机化学
作者
Zengzhu Li,Huafeng Dong,Bingkai Zhang
标识
DOI:10.1021/acsami.3c06745
摘要
The development of all-solid-state lithium-ion batteries (ASSLIBs) is highly dependent on solid-state electrolyte (SSEs) performance. However, current SSEs cannot satisfactorily meet the requirements for high interfacial stability and Li-ion conductivity, especially under high-voltage cycling conditions. To overcome the intractable problems, we theoretically develop the chemistry of structural units to build a series of MX6-unit mixed framework Li5M10.5M20.5X8 (total 184 halides) for use as SSEs and recommend six halide candidates that combine the (electro)chemical stability with a low Li-ion migration barrier. Among them, three Li5M10.5M20.5F8 compounds (M1 = Ca and Mg; M2 = Ti and Zr) exhibit expansive electrochemical windows with a high cathodic limit (6.3 V vs μLi) and three-dimensional Li diffusion associated with moderate Li-migration barriers. To discuss their stability and compatibility (and in turn as a reference for experiments), the energy above the convex hull, the electrochemical stability window, the predicted (electro)reaction products, and the calculated reaction energies of Li5M10.5M20.5X8 in combination with Li–metal and several cathodes are tabulated. We stress that the importance of the cation-mixed effect and specific moieties for the halide anion leads to a design principle for a halide class of Li-ion SSEs. We provide insight into selecting the optimal halide anion and cations and open a new avenue of broad compositional spaces for stable Li-ion SSEs.
科研通智能强力驱动
Strongly Powered by AbleSci AI