Improving Differentiable Architecture Search via self-distillation

计算机科学 最大值和最小值 可微函数 蒸馏 建筑 离散化 人工神经网络 桥接(联网) 过程(计算) 人工智能 机器学习 数学 艺术 数学分析 计算机网络 化学 有机化学 视觉艺术 操作系统
作者
Xunyu Zhu,Jian Li,Yong Liu,Weiping Wang
出处
期刊:Neural Networks [Elsevier BV]
卷期号:167: 656-667 被引量:2
标识
DOI:10.1016/j.neunet.2023.08.062
摘要

Differentiable Architecture Search (DARTS) is a simple yet efficient Neural Architecture Search (NAS) method. During the search stage, DARTS trains a supernet by jointly optimizing architecture parameters and network parameters. During the evaluation stage, DARTS discretizes the supernet to derive the optimal architecture based on architecture parameters. However, recent research has shown that during the training process, the supernet tends to converge towards sharp minima rather than flat minima. This is evidenced by the higher sharpness of the loss landscape of the supernet, which ultimately leads to a performance gap between the supernet and the optimal architecture. In this paper, we propose Self-Distillation Differentiable Neural Architecture Search (SD-DARTS) to alleviate the discretization gap. We utilize self-distillation to distill knowledge from previous steps of the supernet to guide its training in the current step, effectively reducing the sharpness of the supernet's loss and bridging the performance gap between the supernet and the optimal architecture. Furthermore, we introduce the concept of voting teachers, where multiple previous supernets are selected as teachers, and their output probabilities are aggregated through voting to obtain the final teacher prediction. Experimental results on real datasets demonstrate the advantages of our novel self-distillation-based NAS method compared to state-of-the-art alternatives.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不想干活应助科研通管家采纳,获得10
刚刚
英姑应助科研通管家采纳,获得10
刚刚
不想干活应助科研通管家采纳,获得10
刚刚
完美世界应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
不想干活应助科研通管家采纳,获得10
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
香蕉觅云应助科研通管家采纳,获得10
1秒前
聂国烽完成签到,获得积分10
1秒前
斯文败类应助科研通管家采纳,获得10
1秒前
橘猫爱笑完成签到 ,获得积分10
1秒前
李佳倩完成签到 ,获得积分10
2秒前
2秒前
东单的单车完成签到,获得积分10
3秒前
乐白发布了新的文献求助10
3秒前
贪玩的醉柳关注了科研通微信公众号
4秒前
俊逸凌雪完成签到,获得积分10
4秒前
苹果煎蛋发布了新的文献求助10
5秒前
HXY完成签到,获得积分20
5秒前
三木完成签到,获得积分10
5秒前
英姑应助leo采纳,获得10
5秒前
7秒前
7秒前
7秒前
9秒前
cc4ever完成签到,获得积分10
9秒前
眯眯眼的访冬完成签到 ,获得积分10
10秒前
11秒前
hhh发布了新的文献求助10
11秒前
贾世冰发布了新的文献求助10
12秒前
赘婿应助乐白采纳,获得10
12秒前
从容慕青发布了新的文献求助10
12秒前
13秒前
学术版7e发布了新的文献求助30
14秒前
15秒前
15秒前
科研通AI5应助zhy采纳,获得30
16秒前
SciGPT应助冬夜渐暖采纳,获得10
17秒前
CT完成签到,获得积分10
17秒前
小猪发布了新的文献求助30
17秒前
高分求助中
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4548351
求助须知:如何正确求助?哪些是违规求助? 3979162
关于积分的说明 12320490
捐赠科研通 3647724
什么是DOI,文献DOI怎么找? 2008929
邀请新用户注册赠送积分活动 1044359
科研通“疑难数据库(出版商)”最低求助积分说明 932972