亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Improving Differentiable Architecture Search via self-distillation

计算机科学 最大值和最小值 可微函数 蒸馏 建筑 离散化 人工神经网络 桥接(联网) 过程(计算) 人工智能 机器学习 数学 视觉艺术 艺术 有机化学 化学 数学分析 操作系统 计算机网络
作者
Xunyu Zhu,Jian Li,Yong Liu,Weiping Wang
出处
期刊:Neural Networks [Elsevier BV]
卷期号:167: 656-667 被引量:2
标识
DOI:10.1016/j.neunet.2023.08.062
摘要

Differentiable Architecture Search (DARTS) is a simple yet efficient Neural Architecture Search (NAS) method. During the search stage, DARTS trains a supernet by jointly optimizing architecture parameters and network parameters. During the evaluation stage, DARTS discretizes the supernet to derive the optimal architecture based on architecture parameters. However, recent research has shown that during the training process, the supernet tends to converge towards sharp minima rather than flat minima. This is evidenced by the higher sharpness of the loss landscape of the supernet, which ultimately leads to a performance gap between the supernet and the optimal architecture. In this paper, we propose Self-Distillation Differentiable Neural Architecture Search (SD-DARTS) to alleviate the discretization gap. We utilize self-distillation to distill knowledge from previous steps of the supernet to guide its training in the current step, effectively reducing the sharpness of the supernet's loss and bridging the performance gap between the supernet and the optimal architecture. Furthermore, we introduce the concept of voting teachers, where multiple previous supernets are selected as teachers, and their output probabilities are aggregated through voting to obtain the final teacher prediction. Experimental results on real datasets demonstrate the advantages of our novel self-distillation-based NAS method compared to state-of-the-art alternatives.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
宅心仁厚完成签到 ,获得积分10
1秒前
16秒前
41秒前
蜗牛小霸王完成签到,获得积分10
50秒前
51秒前
53秒前
54秒前
rerorero18发布了新的文献求助10
57秒前
1分钟前
脑洞疼应助科研通管家采纳,获得10
1分钟前
唐泽雪穗应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
sailingluwl完成签到,获得积分10
1分钟前
1分钟前
今晚喝两杯完成签到,获得积分20
1分钟前
季生完成签到,获得积分10
1分钟前
染东完成签到,获得积分10
1分钟前
1分钟前
1分钟前
难过的踏歌完成签到,获得积分10
1分钟前
雁塔完成签到 ,获得积分10
1分钟前
yangjoy完成签到 ,获得积分10
1分钟前
2分钟前
bobo完成签到 ,获得积分10
2分钟前
研友_Bn29bL发布了新的文献求助10
2分钟前
2分钟前
研友_Bn29bL完成签到,获得积分20
2分钟前
黄瑞发布了新的文献求助10
2分钟前
2分钟前
黄瑞完成签到,获得积分20
2分钟前
2分钟前
汉堡包应助娇气的火车采纳,获得10
2分钟前
研友_VZG7GZ应助黄瑞采纳,获得10
2分钟前
2分钟前
NexusExplorer应助ZSN采纳,获得10
2分钟前
2分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
唐泽雪穗应助科研通管家采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
可见光通信专用集成电路及实时系统 500
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4879953
求助须知:如何正确求助?哪些是违规求助? 4166788
关于积分的说明 12927209
捐赠科研通 3925467
什么是DOI,文献DOI怎么找? 2154812
邀请新用户注册赠送积分活动 1172867
关于科研通互助平台的介绍 1076882