Improving Differentiable Architecture Search via self-distillation

计算机科学 最大值和最小值 可微函数 蒸馏 建筑 离散化 人工神经网络 桥接(联网) 过程(计算) 人工智能 机器学习 数学 视觉艺术 艺术 有机化学 化学 数学分析 操作系统 计算机网络
作者
Xunyu Zhu,Jian Li,Yong Liu,Weiping Wang
出处
期刊:Neural Networks [Elsevier BV]
卷期号:167: 656-667 被引量:2
标识
DOI:10.1016/j.neunet.2023.08.062
摘要

Differentiable Architecture Search (DARTS) is a simple yet efficient Neural Architecture Search (NAS) method. During the search stage, DARTS trains a supernet by jointly optimizing architecture parameters and network parameters. During the evaluation stage, DARTS discretizes the supernet to derive the optimal architecture based on architecture parameters. However, recent research has shown that during the training process, the supernet tends to converge towards sharp minima rather than flat minima. This is evidenced by the higher sharpness of the loss landscape of the supernet, which ultimately leads to a performance gap between the supernet and the optimal architecture. In this paper, we propose Self-Distillation Differentiable Neural Architecture Search (SD-DARTS) to alleviate the discretization gap. We utilize self-distillation to distill knowledge from previous steps of the supernet to guide its training in the current step, effectively reducing the sharpness of the supernet's loss and bridging the performance gap between the supernet and the optimal architecture. Furthermore, we introduce the concept of voting teachers, where multiple previous supernets are selected as teachers, and their output probabilities are aggregated through voting to obtain the final teacher prediction. Experimental results on real datasets demonstrate the advantages of our novel self-distillation-based NAS method compared to state-of-the-art alternatives.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
糊涂涂完成签到,获得积分10
刚刚
充电宝应助踏实以丹采纳,获得10
刚刚
aa完成签到,获得积分10
2秒前
小王发布了新的文献求助10
3秒前
小猪佩奇完成签到,获得积分10
3秒前
DBY发布了新的文献求助10
4秒前
明理夏槐发布了新的文献求助10
4秒前
4秒前
CROWN完成签到,获得积分10
5秒前
5秒前
科研通AI2S应助Mr采纳,获得10
5秒前
6秒前
朴实初夏完成签到 ,获得积分10
7秒前
7秒前
8秒前
zjsy完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
Ryan发布了新的文献求助10
10秒前
乖乖发布了新的文献求助10
10秒前
jiao发布了新的文献求助10
11秒前
11秒前
12秒前
Triste发布了新的文献求助10
13秒前
13秒前
bji发布了新的文献求助10
13秒前
自由的未来完成签到,获得积分10
14秒前
清醒发布了新的文献求助10
14秒前
14秒前
安诺完成签到,获得积分10
14秒前
14秒前
俏皮钢笔完成签到,获得积分10
14秒前
14秒前
SciGPT应助正直的雨双采纳,获得10
15秒前
little完成签到,获得积分10
16秒前
向雨竹发布了新的文献求助10
17秒前
Jasper应助orange采纳,获得10
17秒前
sedrakyan发布了新的文献求助10
17秒前
17秒前
汉堡包应助duobao鱼采纳,获得10
17秒前
元元元贞完成签到 ,获得积分10
17秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951758
求助须知:如何正确求助?哪些是违规求助? 3497124
关于积分的说明 11086059
捐赠科研通 3227597
什么是DOI,文献DOI怎么找? 1784497
邀请新用户注册赠送积分活动 868586
科研通“疑难数据库(出版商)”最低求助积分说明 801154