Improving Differentiable Architecture Search via self-distillation

计算机科学 最大值和最小值 可微函数 蒸馏 建筑 离散化 人工神经网络 桥接(联网) 过程(计算) 人工智能 机器学习 数学 视觉艺术 艺术 有机化学 化学 数学分析 操作系统 计算机网络
作者
Xunyu Zhu,Jian Li,Yong Liu,Weiping Wang
出处
期刊:Neural Networks [Elsevier BV]
卷期号:167: 656-667 被引量:2
标识
DOI:10.1016/j.neunet.2023.08.062
摘要

Differentiable Architecture Search (DARTS) is a simple yet efficient Neural Architecture Search (NAS) method. During the search stage, DARTS trains a supernet by jointly optimizing architecture parameters and network parameters. During the evaluation stage, DARTS discretizes the supernet to derive the optimal architecture based on architecture parameters. However, recent research has shown that during the training process, the supernet tends to converge towards sharp minima rather than flat minima. This is evidenced by the higher sharpness of the loss landscape of the supernet, which ultimately leads to a performance gap between the supernet and the optimal architecture. In this paper, we propose Self-Distillation Differentiable Neural Architecture Search (SD-DARTS) to alleviate the discretization gap. We utilize self-distillation to distill knowledge from previous steps of the supernet to guide its training in the current step, effectively reducing the sharpness of the supernet's loss and bridging the performance gap between the supernet and the optimal architecture. Furthermore, we introduce the concept of voting teachers, where multiple previous supernets are selected as teachers, and their output probabilities are aggregated through voting to obtain the final teacher prediction. Experimental results on real datasets demonstrate the advantages of our novel self-distillation-based NAS method compared to state-of-the-art alternatives.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助潇飞天下采纳,获得10
2秒前
3秒前
5秒前
宇老师发布了新的文献求助10
6秒前
7秒前
ddd发布了新的文献求助30
8秒前
刘小孩完成签到,获得积分10
8秒前
lily发布了新的文献求助10
9秒前
10秒前
文静的摩托完成签到,获得积分10
11秒前
柚子味香煎包完成签到,获得积分20
11秒前
传奇3应助会爬树的苹果采纳,获得10
13秒前
奕青完成签到,获得积分10
14秒前
情怀应助宇老师采纳,获得10
14秒前
羊小受发布了新的文献求助10
15秒前
能能完成签到,获得积分10
16秒前
尊敬雨灵完成签到,获得积分10
16秒前
hrpppp发布了新的文献求助10
16秒前
香蕉觅云应助xyc采纳,获得10
16秒前
16秒前
17秒前
19秒前
lsy发布了新的文献求助10
22秒前
23秒前
宇老师完成签到,获得积分10
23秒前
camellia发布了新的文献求助10
24秒前
hrpppp完成签到,获得积分10
25秒前
YuuuY发布了新的文献求助10
26秒前
28秒前
巫马凌旋完成签到,获得积分10
29秒前
29秒前
ceeray23应助科研通管家采纳,获得10
30秒前
Orange应助科研通管家采纳,获得10
30秒前
hexiao完成签到,获得积分10
30秒前
大个应助科研通管家采纳,获得10
30秒前
华仔应助科研要努力采纳,获得10
30秒前
Hello应助科研通管家采纳,获得10
30秒前
SciGPT应助羊小受采纳,获得10
31秒前
今后应助科研通管家采纳,获得10
31秒前
orixero应助科研通管家采纳,获得10
31秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5209018
求助须知:如何正确求助?哪些是违规求助? 4386324
关于积分的说明 13660666
捐赠科研通 4245433
什么是DOI,文献DOI怎么找? 2329264
邀请新用户注册赠送积分活动 1327101
关于科研通互助平台的介绍 1279391