Learning Spatio-Temporal Model of Disease Progression With NeuralODEs From Longitudinal Volumetric Data

计算机科学 人工智能 深度学习 分割 机器学习 多任务学习 疾病 萎缩 模式 计算机视觉 医学 任务(项目管理) 病理 社会科学 管理 社会学 经济
作者
Dmitrii Lachinov,Arunava Chakravarty,Christoph Grechenig,Ursula Schmidt‐Erfurth,Hrvoje Bogunović
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (3): 1165-1179 被引量:4
标识
DOI:10.1109/tmi.2023.3330576
摘要

Robust forecasting of the future anatomical changes inflicted by an ongoing disease is an extremely challenging task that is out of grasp even for experienced healthcare professionals. Such a capability, however, is of great importance since it can improve patient management by providing information on the speed of disease progression already at the admission stage, or it can enrich the clinical trials with fast progressors and avoid the need for control arms by the means of digital twins. In this work, we develop a deep learning method that models the evolution of age-related disease by processing a single medical scan and providing a segmentation of the target anatomy at a requested future point in time. Our method represents a time-invariant physical process and solves a large-scale problem of modeling temporal pixel-level changes utilizing NeuralODEs. In addition, we demonstrate the approaches to incorporate the prior domain-specific constraints into our method and define temporal Dice loss for learning temporal objectives. To evaluate the applicability of our approach across different age-related diseases and imaging modalities, we developed and tested the proposed method on the datasets with 967 retinal OCT volumes of 100 patients with Geographic Atrophy and 2823 brain MRI volumes of 633 patients with Alzheimer's Disease. For Geographic Atrophy, the proposed method outperformed the related baseline models in the atrophy growth prediction. For Alzheimer's Disease, the proposed method demonstrated remarkable performance in predicting the brain ventricle changes induced by the disease, achieving the state-of-the-art result on TADPOLE cross-sectional prediction challenge dataset.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
iwhsgfes完成签到,获得积分10
1秒前
望远镜完成签到 ,获得积分10
2秒前
wangjuncheng发布了新的文献求助10
2秒前
懵懂的飞机完成签到 ,获得积分10
3秒前
allglitters发布了新的文献求助30
3秒前
Lucas应助老张采纳,获得10
5秒前
打打应助Mingyue123采纳,获得30
5秒前
悠悠发布了新的文献求助20
5秒前
6秒前
江鹿柒柒发布了新的文献求助10
6秒前
6秒前
友好醉波完成签到,获得积分10
7秒前
7秒前
可爱的函函应助caltrate515采纳,获得10
7秒前
7秒前
7秒前
scale完成签到,获得积分10
8秒前
上官若男应助wcy采纳,获得10
8秒前
10秒前
hkh发布了新的文献求助10
10秒前
lin发布了新的文献求助10
11秒前
12秒前
ice7发布了新的文献求助20
12秒前
12秒前
罗乐天发布了新的文献求助10
12秒前
13秒前
tuanheqi应助科研通管家采纳,获得50
16秒前
小二郎应助科研通管家采纳,获得30
16秒前
16秒前
小马甲应助科研通管家采纳,获得10
16秒前
烟花应助科研通管家采纳,获得10
16秒前
小蘑菇应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
16秒前
柚子完成签到,获得积分10
17秒前
17秒前
隐形凡雁发布了新的文献求助10
18秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148271
求助须知:如何正确求助?哪些是违规求助? 2799495
关于积分的说明 7834708
捐赠科研通 2456632
什么是DOI,文献DOI怎么找? 1307357
科研通“疑难数据库(出版商)”最低求助积分说明 628154
版权声明 601655