已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Learning Spatio-Temporal Model of Disease Progression With NeuralODEs From Longitudinal Volumetric Data

计算机科学 人工智能 深度学习 分割 机器学习 多任务学习 疾病 萎缩 模式 计算机视觉 医学 任务(项目管理) 病理 社会科学 管理 社会学 经济
作者
Dmitrii Lachinov,Arunava Chakravarty,Christoph Grechenig,Ursula Schmidt‐Erfurth,Hrvoje Bogunović
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (3): 1165-1179 被引量:4
标识
DOI:10.1109/tmi.2023.3330576
摘要

Robust forecasting of the future anatomical changes inflicted by an ongoing disease is an extremely challenging task that is out of grasp even for experienced healthcare professionals. Such a capability, however, is of great importance since it can improve patient management by providing information on the speed of disease progression already at the admission stage, or it can enrich the clinical trials with fast progressors and avoid the need for control arms by the means of digital twins. In this work, we develop a deep learning method that models the evolution of age-related disease by processing a single medical scan and providing a segmentation of the target anatomy at a requested future point in time. Our method represents a time-invariant physical process and solves a large-scale problem of modeling temporal pixel-level changes utilizing NeuralODEs. In addition, we demonstrate the approaches to incorporate the prior domain-specific constraints into our method and define temporal Dice loss for learning temporal objectives. To evaluate the applicability of our approach across different age-related diseases and imaging modalities, we developed and tested the proposed method on the datasets with 967 retinal OCT volumes of 100 patients with Geographic Atrophy and 2823 brain MRI volumes of 633 patients with Alzheimer's Disease. For Geographic Atrophy, the proposed method outperformed the related baseline models in the atrophy growth prediction. For Alzheimer's Disease, the proposed method demonstrated remarkable performance in predicting the brain ventricle changes induced by the disease, achieving the state-of-the-art result on TADPOLE cross-sectional prediction challenge dataset.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zcc发布了新的文献求助10
刚刚
Yun完成签到 ,获得积分10
刚刚
爱学习的YY完成签到 ,获得积分10
1秒前
4秒前
思源应助公西凝芙采纳,获得10
5秒前
自闭儿童发布了新的文献求助30
6秒前
完美世界应助敦敦采纳,获得10
6秒前
英姑应助啦啦啦采纳,获得10
8秒前
8秒前
lu完成签到 ,获得积分10
9秒前
chuanxue完成签到,获得积分10
11秒前
Yuang完成签到 ,获得积分10
13秒前
缥缈的涵菡完成签到 ,获得积分20
13秒前
14秒前
chuanxue发布了新的文献求助30
14秒前
冷酷飞飞完成签到 ,获得积分10
17秒前
Heyley完成签到,获得积分10
17秒前
18秒前
酷酷语兰完成签到,获得积分10
20秒前
浅呀呀呀发布了新的文献求助10
20秒前
自闭儿童完成签到,获得积分10
21秒前
心灵美的千易完成签到 ,获得积分10
22秒前
在水一方应助sunshine采纳,获得10
25秒前
灰灰发布了新的文献求助10
27秒前
kimchiyak留下了新的社区评论
28秒前
小白完成签到 ,获得积分10
29秒前
31秒前
搜集达人应助科研通管家采纳,获得10
31秒前
FashionBoy应助科研通管家采纳,获得20
32秒前
32秒前
Criminology34应助科研通管家采纳,获得10
32秒前
科目三应助科研通管家采纳,获得10
32秒前
等待黎明完成签到,获得积分10
33秒前
桐桐应助大方的听露采纳,获得10
33秒前
33秒前
烟花应助浅呀呀呀采纳,获得10
34秒前
35秒前
enchanted完成签到,获得积分10
37秒前
sunshine发布了新的文献求助10
38秒前
enchanted发布了新的文献求助10
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639400
求助须知:如何正确求助?哪些是违规求助? 4748007
关于积分的说明 15006238
捐赠科研通 4797572
什么是DOI,文献DOI怎么找? 2563542
邀请新用户注册赠送积分活动 1522544
关于科研通互助平台的介绍 1482258