Learning Spatio-Temporal Model of Disease Progression With NeuralODEs From Longitudinal Volumetric Data

计算机科学 人工智能 深度学习 分割 机器学习 多任务学习 疾病 萎缩 模式 计算机视觉 医学 任务(项目管理) 病理 社会学 经济 管理 社会科学
作者
Dmitrii Lachinov,Arunava Chakravarty,Christoph Grechenig,Ursula Schmidt‐Erfurth,Hrvoje Bogunović
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (3): 1165-1179 被引量:4
标识
DOI:10.1109/tmi.2023.3330576
摘要

Robust forecasting of the future anatomical changes inflicted by an ongoing disease is an extremely challenging task that is out of grasp even for experienced healthcare professionals. Such a capability, however, is of great importance since it can improve patient management by providing information on the speed of disease progression already at the admission stage, or it can enrich the clinical trials with fast progressors and avoid the need for control arms by the means of digital twins. In this work, we develop a deep learning method that models the evolution of age-related disease by processing a single medical scan and providing a segmentation of the target anatomy at a requested future point in time. Our method represents a time-invariant physical process and solves a large-scale problem of modeling temporal pixel-level changes utilizing NeuralODEs. In addition, we demonstrate the approaches to incorporate the prior domain-specific constraints into our method and define temporal Dice loss for learning temporal objectives. To evaluate the applicability of our approach across different age-related diseases and imaging modalities, we developed and tested the proposed method on the datasets with 967 retinal OCT volumes of 100 patients with Geographic Atrophy and 2823 brain MRI volumes of 633 patients with Alzheimer's Disease. For Geographic Atrophy, the proposed method outperformed the related baseline models in the atrophy growth prediction. For Alzheimer's Disease, the proposed method demonstrated remarkable performance in predicting the brain ventricle changes induced by the disease, achieving the state-of-the-art result on TADPOLE cross-sectional prediction challenge dataset.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
一粒苹果酒完成签到,获得积分10
1秒前
2秒前
阿西吧完成签到,获得积分10
3秒前
4秒前
4秒前
小乐发布了新的文献求助10
4秒前
4秒前
傅剑寒发布了新的文献求助30
4秒前
瓜6发布了新的文献求助10
5秒前
十是十发布了新的文献求助10
5秒前
科研通AI6应助山逍采纳,获得10
5秒前
Tom完成签到 ,获得积分10
6秒前
6秒前
傲娇芷容完成签到,获得积分20
8秒前
林新杰发布了新的文献求助10
8秒前
NexusExplorer应助gaintpeople采纳,获得10
10秒前
斯文败类应助ysy采纳,获得10
11秒前
科研小能手完成签到,获得积分10
11秒前
11秒前
zzzdx发布了新的文献求助10
12秒前
郭大侠发布了新的文献求助10
12秒前
英俊的如霜完成签到,获得积分10
13秒前
我是老大应助GTY采纳,获得30
14秒前
15秒前
seul完成签到,获得积分20
15秒前
风清扬发布了新的文献求助10
16秒前
16秒前
Una发布了新的文献求助10
16秒前
那就来吧完成签到,获得积分20
16秒前
16秒前
Hali完成签到,获得积分10
17秒前
瓜6完成签到 ,获得积分10
17秒前
华仔应助疯狂的吐司采纳,获得10
17秒前
林新杰完成签到,获得积分10
18秒前
执着从灵发布了新的文献求助20
19秒前
19秒前
luct发布了新的文献求助10
20秒前
Wangguagua完成签到 ,获得积分10
20秒前
失眠的思松关注了科研通微信公众号
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5354701
求助须知:如何正确求助?哪些是违规求助? 4486753
关于积分的说明 13967752
捐赠科研通 4387338
什么是DOI,文献DOI怎么找? 2410339
邀请新用户注册赠送积分活动 1402728
关于科研通互助平台的介绍 1376552