亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Learning Spatio-Temporal Model of Disease Progression With NeuralODEs From Longitudinal Volumetric Data

计算机科学 人工智能 深度学习 分割 机器学习 多任务学习 疾病 萎缩 模式 计算机视觉 医学 任务(项目管理) 病理 社会学 经济 管理 社会科学
作者
Dmitrii Lachinov,Arunava Chakravarty,Christoph Grechenig,Ursula Schmidt‐Erfurth,Hrvoje Bogunović
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (3): 1165-1179 被引量:4
标识
DOI:10.1109/tmi.2023.3330576
摘要

Robust forecasting of the future anatomical changes inflicted by an ongoing disease is an extremely challenging task that is out of grasp even for experienced healthcare professionals. Such a capability, however, is of great importance since it can improve patient management by providing information on the speed of disease progression already at the admission stage, or it can enrich the clinical trials with fast progressors and avoid the need for control arms by the means of digital twins. In this work, we develop a deep learning method that models the evolution of age-related disease by processing a single medical scan and providing a segmentation of the target anatomy at a requested future point in time. Our method represents a time-invariant physical process and solves a large-scale problem of modeling temporal pixel-level changes utilizing NeuralODEs. In addition, we demonstrate the approaches to incorporate the prior domain-specific constraints into our method and define temporal Dice loss for learning temporal objectives. To evaluate the applicability of our approach across different age-related diseases and imaging modalities, we developed and tested the proposed method on the datasets with 967 retinal OCT volumes of 100 patients with Geographic Atrophy and 2823 brain MRI volumes of 633 patients with Alzheimer's Disease. For Geographic Atrophy, the proposed method outperformed the related baseline models in the atrophy growth prediction. For Alzheimer's Disease, the proposed method demonstrated remarkable performance in predicting the brain ventricle changes induced by the disease, achieving the state-of-the-art result on TADPOLE cross-sectional prediction challenge dataset.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xgq完成签到,获得积分20
2秒前
7秒前
clm完成签到 ,获得积分10
9秒前
twk发布了新的文献求助10
14秒前
flyingpig完成签到,获得积分10
19秒前
kukudou2发布了新的文献求助10
38秒前
科研通AI2S应助twk采纳,获得20
57秒前
小二郎应助kukudou2采纳,获得10
58秒前
xgq发布了新的文献求助10
1分钟前
1分钟前
1分钟前
啦啦啦啦发布了新的文献求助10
1分钟前
Xixicccccccc发布了新的文献求助10
1分钟前
xgq关注了科研通微信公众号
1分钟前
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
1分钟前
科研通AI6.1应助liuliu采纳,获得30
1分钟前
1分钟前
11发布了新的文献求助10
2分钟前
友好绿柏发布了新的文献求助10
2分钟前
小马甲应助dawn采纳,获得10
2分钟前
2分钟前
dawn发布了新的文献求助10
2分钟前
善学以致用应助Fluoxtine采纳,获得10
3分钟前
黑鲨完成签到 ,获得积分10
3分钟前
Ava应助粗暴的坤采纳,获得10
3分钟前
瘦瘦的迎南完成签到 ,获得积分10
3分钟前
3分钟前
谷雨秋发布了新的文献求助10
3分钟前
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
wanci应助科研通管家采纳,获得10
3分钟前
J_Xu完成签到 ,获得积分10
3分钟前
所所应助凛玖niro采纳,获得10
4分钟前
4分钟前
凛玖niro发布了新的文献求助10
4分钟前
霖槿完成签到,获得积分10
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788653
求助须知:如何正确求助?哪些是违规求助? 5710088
关于积分的说明 15473780
捐赠科研通 4916652
什么是DOI,文献DOI怎么找? 2646501
邀请新用户注册赠送积分活动 1594171
关于科研通互助平台的介绍 1548587