亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Learning Spatio-Temporal Model of Disease Progression With NeuralODEs From Longitudinal Volumetric Data

计算机科学 人工智能 深度学习 分割 机器学习 多任务学习 疾病 萎缩 模式 计算机视觉 医学 任务(项目管理) 病理 社会科学 管理 社会学 经济
作者
Dmitrii Lachinov,Arunava Chakravarty,Christoph Grechenig,Ursula Schmidt‐Erfurth,Hrvoje Bogunović
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (3): 1165-1179 被引量:4
标识
DOI:10.1109/tmi.2023.3330576
摘要

Robust forecasting of the future anatomical changes inflicted by an ongoing disease is an extremely challenging task that is out of grasp even for experienced healthcare professionals. Such a capability, however, is of great importance since it can improve patient management by providing information on the speed of disease progression already at the admission stage, or it can enrich the clinical trials with fast progressors and avoid the need for control arms by the means of digital twins. In this work, we develop a deep learning method that models the evolution of age-related disease by processing a single medical scan and providing a segmentation of the target anatomy at a requested future point in time. Our method represents a time-invariant physical process and solves a large-scale problem of modeling temporal pixel-level changes utilizing NeuralODEs. In addition, we demonstrate the approaches to incorporate the prior domain-specific constraints into our method and define temporal Dice loss for learning temporal objectives. To evaluate the applicability of our approach across different age-related diseases and imaging modalities, we developed and tested the proposed method on the datasets with 967 retinal OCT volumes of 100 patients with Geographic Atrophy and 2823 brain MRI volumes of 633 patients with Alzheimer's Disease. For Geographic Atrophy, the proposed method outperformed the related baseline models in the atrophy growth prediction. For Alzheimer's Disease, the proposed method demonstrated remarkable performance in predicting the brain ventricle changes induced by the disease, achieving the state-of-the-art result on TADPOLE cross-sectional prediction challenge dataset.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
6秒前
圆圆完成签到 ,获得积分10
9秒前
美罗培南完成签到,获得积分10
9秒前
烨枫晨曦完成签到,获得积分10
16秒前
AliEmbark完成签到,获得积分10
22秒前
xy完成签到 ,获得积分10
28秒前
葛力发布了新的文献求助10
29秒前
36秒前
活力的驳发布了新的文献求助10
40秒前
传奇3应助活力的驳采纳,获得30
46秒前
无花果应助暮光的加纳采纳,获得10
48秒前
好烦完成签到,获得积分10
49秒前
54秒前
56秒前
59秒前
1分钟前
余甘木发布了新的文献求助10
1分钟前
舒服的吗喽完成签到,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
lei发布了新的文献求助10
1分钟前
1分钟前
1分钟前
xiaoyy完成签到,获得积分10
1分钟前
脑洞疼应助lei采纳,获得10
2分钟前
xiaoyy发布了新的文献求助10
2分钟前
2分钟前
今后应助暮光的加纳采纳,获得10
2分钟前
2分钟前
2分钟前
暮光的加纳完成签到,获得积分10
2分钟前
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
vicky完成签到 ,获得积分10
2分钟前
与一完成签到 ,获得积分10
3分钟前
xiaozhu完成签到,获得积分10
3分钟前
nnnick完成签到,获得积分0
3分钟前
Jason完成签到 ,获得积分10
3分钟前
古铜完成签到 ,获得积分10
3分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960064
求助须知:如何正确求助?哪些是违规求助? 3506271
关于积分的说明 11128598
捐赠科研通 3238264
什么是DOI,文献DOI怎么找? 1789651
邀请新用户注册赠送积分活动 871846
科研通“疑难数据库(出版商)”最低求助积分说明 803069