Learning Spatio-Temporal Model of Disease Progression With NeuralODEs From Longitudinal Volumetric Data

计算机科学 人工智能 深度学习 分割 机器学习 多任务学习 疾病 萎缩 模式 计算机视觉 医学 任务(项目管理) 病理 社会学 经济 管理 社会科学
作者
Dmitrii Lachinov,Arunava Chakravarty,Christoph Grechenig,Ursula Schmidt‐Erfurth,Hrvoje Bogunović
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (3): 1165-1179 被引量:4
标识
DOI:10.1109/tmi.2023.3330576
摘要

Robust forecasting of the future anatomical changes inflicted by an ongoing disease is an extremely challenging task that is out of grasp even for experienced healthcare professionals. Such a capability, however, is of great importance since it can improve patient management by providing information on the speed of disease progression already at the admission stage, or it can enrich the clinical trials with fast progressors and avoid the need for control arms by the means of digital twins. In this work, we develop a deep learning method that models the evolution of age-related disease by processing a single medical scan and providing a segmentation of the target anatomy at a requested future point in time. Our method represents a time-invariant physical process and solves a large-scale problem of modeling temporal pixel-level changes utilizing NeuralODEs. In addition, we demonstrate the approaches to incorporate the prior domain-specific constraints into our method and define temporal Dice loss for learning temporal objectives. To evaluate the applicability of our approach across different age-related diseases and imaging modalities, we developed and tested the proposed method on the datasets with 967 retinal OCT volumes of 100 patients with Geographic Atrophy and 2823 brain MRI volumes of 633 patients with Alzheimer's Disease. For Geographic Atrophy, the proposed method outperformed the related baseline models in the atrophy growth prediction. For Alzheimer's Disease, the proposed method demonstrated remarkable performance in predicting the brain ventricle changes induced by the disease, achieving the state-of-the-art result on TADPOLE cross-sectional prediction challenge dataset.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小w完成签到,获得积分10
刚刚
警长发布了新的文献求助10
刚刚
naomi完成签到,获得积分10
刚刚
尔玉完成签到 ,获得积分10
刚刚
1秒前
biofresh完成签到,获得积分10
1秒前
英勇真发布了新的文献求助10
2秒前
酷波er应助577采纳,获得10
2秒前
菲菲不是飞飞完成签到,获得积分10
2秒前
勤奋的含烟给勤奋的含烟的求助进行了留言
3秒前
Hello应助penguin采纳,获得10
3秒前
隐形曼青应助方源采纳,获得10
3秒前
3秒前
CodeCraft应助荔枝酱果冻采纳,获得10
3秒前
golfgold完成签到,获得积分10
3秒前
4秒前
flow发布了新的文献求助10
4秒前
4秒前
ycool完成签到 ,获得积分10
4秒前
桐桐应助凡仔采纳,获得10
5秒前
暴躁的元灵完成签到,获得积分10
5秒前
5秒前
务实时光发布了新的文献求助10
6秒前
科研通AI5应助玖玖采纳,获得10
6秒前
笑点低凌珍完成签到 ,获得积分10
6秒前
大黄发布了新的文献求助10
6秒前
NIkon完成签到,获得积分10
6秒前
7秒前
脑洞疼应助昵称呢采纳,获得30
7秒前
7秒前
科研通AI5应助拉拉啊了采纳,获得10
7秒前
7秒前
小青椒应助ludong_0采纳,获得200
7秒前
7秒前
8秒前
大个应助大朋采纳,获得10
8秒前
VergissH完成签到,获得积分10
8秒前
科研通AI6应助Lei采纳,获得10
8秒前
李健应助玖月采纳,获得10
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Feigin and Cherry's Textbook of Pediatric Infectious Diseases Ninth Edition 2024 4000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5001832
求助须知:如何正确求助?哪些是违规求助? 4246915
关于积分的说明 13231512
捐赠科研通 4045758
什么是DOI,文献DOI怎么找? 2213210
邀请新用户注册赠送积分活动 1223392
关于科研通互助平台的介绍 1143701