A Step-by-Step Process of Thematic Analysis to Develop a Conceptual Model in Qualitative Research

主题分析 概念化 扎根理论 定性研究 管理科学 计算机科学 过程(计算) 概念模型 社会学 社会科学 人工智能 工程类 数据库 操作系统
作者
Muhammad Naeem,Wilson Ozuem,Kerry E. Howell,Silvia Ranfagni
出处
期刊:International journal of qualitative methods [SAGE]
卷期号:22 被引量:1136
标识
DOI:10.1177/16094069231205789
摘要

Thematic analysis is a highly popular technique among qualitative researchers for analyzing qualitative data, which usually comprises thick descriptive data. However, the application and use of thematic analysis has also involved complications due to confusion regarding the final outcome’s presentation as a conceptual model. This paper develops a systematic thematic analysis process for creating a conceptual model from qualitative research findings. It explores the adaptability of the proposed process across various research methodologies, including constructivist methodologies, positivist methodologies, grounded theory, and interpretive phenomenology, and justifies their application. The paper distinguishes between inductive and deductive coding approaches and emphasizes the merits of each. It suggests that the derived systematic thematic analysis model is valuable across multiple disciplines, particularly in grounded theory, ethnographic approaches, and narrative approaches, while also being adaptable to more descriptive, positivist-based methodologies. By providing a methodological roadmap, this study enhances the rigor and replicability of thematic analysis and offers a comprehensive strategy for theoretical conceptualization in qualitative research. The contribution of this paper is a systematic six-step thematic analysis process that leads to the development of a conceptual model; each step is described in detail and examples are given.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
BareBear应助高高手采纳,获得10
1秒前
李健应助wang采纳,获得10
2秒前
2秒前
by完成签到,获得积分10
3秒前
3秒前
3秒前
清浅发布了新的文献求助30
4秒前
太想进部了完成签到,获得积分10
4秒前
4秒前
JamesPei应助干净的友卉采纳,获得10
4秒前
打打应助今天没有哭鸭采纳,获得10
4秒前
JamesPei应助易烊千玺老婆采纳,获得10
4秒前
4秒前
5秒前
852应助SYX采纳,获得30
5秒前
斯文败类应助小小小小采纳,获得10
5秒前
科研通AI6应助HAHA采纳,获得10
5秒前
坚定晓兰应助HAHA采纳,获得10
5秒前
科研通AI6应助HAHA采纳,获得10
5秒前
热心的易烟完成签到,获得积分10
5秒前
6秒前
Hello应助小学生采纳,获得10
6秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
song发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
alvis关注了科研通微信公众号
8秒前
LingMg发布了新的文献求助30
9秒前
不安溪灵完成签到,获得积分10
9秒前
9秒前
9秒前
熊猫海发布了新的文献求助10
9秒前
10秒前
伞下铭发布了新的文献求助10
10秒前
10秒前
11秒前
Herzing发布了新的文献求助10
11秒前
11秒前
喜悦发卡完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667047
求助须知:如何正确求助?哪些是违规求助? 4883873
关于积分的说明 15118527
捐赠科研通 4825937
什么是DOI,文献DOI怎么找? 2583643
邀请新用户注册赠送积分活动 1537807
关于科研通互助平台的介绍 1496002