已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

B-123 Utilization of Five Data Mining Algorithms Combined with Simplified Preprocessing to Establish Reference Intervals of Thyroid Related Hormones for Nonelderly Adults

算法 数据集 计算机科学 人口 数学 统计 数据挖掘 医学 环境卫生
作者
Jian Zhong,Chaochao Ma,Le Hou,Yufeng Yin,Fang Zhao,Yingying Hu,An Song,Dawei Wang,Li L,Xinqi Cheng,Ling Qiu
出处
期刊:Clinical Chemistry [Oxford University Press]
卷期号:69 (Supplement_1)
标识
DOI:10.1093/clinchem/hvad097.457
摘要

Abstract Background Despite the extensive research on data mining algorithms, there is still a lack of a standard protocol to evaluate the performance of the existing algorithms. Therefore, the study aims to provide a novel procedure that combines data mining algorithms and simplified preprocessing to establish reference intervals (RIs), with the performance of five algorithms assessed objectively as well. Methods The Test data set and the Reference data set are the two data sets derived from the population undergoing a physical examination. After the thyroid-related hormone including thyroid stimulating hormone (TSH), free triiodo-thyronine (FT3), total triiodo-thyronine (TT3), free thyroxine(FT4), and total thyroxine (TT4) were measured by an ADVIA Centaur XP chemiluminescence immunoassay analyzer, five data algorithms were used to calculated RIs. Hoffmann, Bhattacharya, Expectation Maximum (EM), kosmic, and refineR algorithms combined with two-step data preprocessing respectively were implemented in the Test data set to establish RIs for thyroid-related hormones. The first step is to conduct a random sampling strategy to balance the ratio of sex and age, and the second step is to identify the outliers of variables in each subgroup by the Tukey method. Algorithm-calculated RIs were compared with the standard RIs calculated by transformed parametric method from the Reference data set in which reference individuals were selected following strict inclusion and exclusion criteria. RIs partition were comprehensively determined by the multiple linear regression and variance component analysis. Objective assessment of the methods is implemented by the bias ratio (BR) matrix, of which the BR threshold was set to 0.375. Results The levels of the all five thyroid-related hormones are significantly different in sex, with the male having lower TSH and higher FT3, FT4, TT3, and TT4 compared to the female. Further analysis indicates the establishment of sex-specific RIs for FT3 and FT4. Standard RIs derived from the Reference data set by transformed parametric method are 0.801–4.221 μIU/L for TSH, 2.58–3.82 pg/mL for FT3, 0.98–1.53 ng/dL for FT4, 0.80–1.38 ng/mL for TT3, 5.46–10.05 g/dL for TT4, respectively. There is a high consistency between TSH RIs established by the EM algorithm and the standard TSH RIs (BR = 0.063), although EM algorithms seems to perform poor on other hormones with the BR higher than 0.375. RIs calculated by Hoffmann, Bhattacharya, and refineR methods for free and total triiodo-thyronine, free and total thyroxine respectively are close and matched the standard RIs. Conclusion An effective approach for objectively evaluating the performance of the algorithm based on the BR matrix is established. EM algorithm combined with simplified preprocessing can handle data with significant skewness, but its performance is limited in other scenarios. The other four algorithms perform well for data with Gaussian or near-Gaussian distribution. Using the appropriate algorithm based on the data distribution characteristics is recommended.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
NatureLee完成签到 ,获得积分10
1秒前
1秒前
张磊发布了新的文献求助10
2秒前
勿明应助研友_LJGoXn采纳,获得100
2秒前
2秒前
星辰大海应助冰冰采纳,获得10
2秒前
yuhang完成签到,获得积分10
3秒前
111发布了新的文献求助10
3秒前
balzacsun发布了新的文献求助10
5秒前
5秒前
糯米椰发布了新的文献求助20
6秒前
7秒前
Xu完成签到 ,获得积分10
7秒前
Cassiel发布了新的文献求助30
7秒前
Vii应助必发文章采纳,获得10
7秒前
Ck发布了新的文献求助10
8秒前
8秒前
yuhang发布了新的文献求助10
9秒前
10秒前
张磊完成签到,获得积分10
12秒前
时光如梭发布了新的文献求助10
12秒前
笑而不语完成签到 ,获得积分10
12秒前
dd完成签到,获得积分10
13秒前
爆米花应助NMZN采纳,获得10
16秒前
17秒前
脑洞疼应助阔达碧空采纳,获得10
18秒前
英姑应助阔达碧空采纳,获得10
18秒前
18秒前
赘婿应助阔达碧空采纳,获得10
18秒前
18秒前
CipherSage应助淡然的宛秋采纳,获得10
18秒前
19秒前
21秒前
21秒前
糯米椰完成签到,获得积分10
21秒前
时光如梭发布了新的文献求助10
24秒前
现代凡发布了新的文献求助30
25秒前
De_Frank123发布了新的文献求助10
25秒前
lalala完成签到,获得积分10
27秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
1.3μm GaAs基InAs量子点材料生长及器件应用 1000
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3526247
求助须知:如何正确求助?哪些是违规求助? 3106663
关于积分的说明 9281184
捐赠科研通 2804184
什么是DOI,文献DOI怎么找? 1539352
邀请新用户注册赠送积分活动 716529
科研通“疑难数据库(出版商)”最低求助积分说明 709495