A Fabric Defect Segmentation Model Based on Improved Swin-Unet with Gabor Filter

计算机科学 人工智能 Gabor滤波器 分割 模式识别(心理学) 计算机视觉 特征提取
作者
Haitao Xu,Chengming Liu,Shuya Duan,Liangpin Ren,Guozhen Cheng,Bing Hao
出处
期刊:Applied sciences [MDPI AG]
卷期号:13 (20): 11386-11386 被引量:2
标识
DOI:10.3390/app132011386
摘要

Fabric inspection is critical in fabric manufacturing. Automatic detection of fabric defects in the textile industry has always been an important research field. Previously, manual visual inspection was commonly used; however, there were drawbacks such as high labor costs, slow detection speed, and high error rates. Recently, many defect detection methods based on deep learning have been proposed. However, problems need to be solved in the existing methods, such as detection accuracy and interference of complex background textures. In this paper, we propose an efficient segmentation algorithm that combines traditional operators with deep learning networks to alleviate the existing problems. Specifically, we introduce a Gabor filter into the model, which provides the unique advantage of extracting low-level texture features to solve the problem of texture interference and enable the algorithm to converge quickly in the early stages of training. Furthermore, we design a U-shaped architecture that is not completely symmetrical, making model training easier. Meanwhile, multi-stage result fusion is proposed for precise location of defects. The design of this framework significantly improves the detection accuracy and effectively breaks through the limitations of transformer-based models. Experimental results show that on a dataset with one class, a small amount of data, and complex sample background texture, our method achieved 90.03% and 33.70% in ACC and IoU, respectively, which is almost 10% higher than other previous state of the art models. Experimental results based on three different fabric datasets consistently show that the proposed model has excellent performance and great application potential in the industrial field.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sos完成签到,获得积分10
刚刚
刚刚
zmz发布了新的文献求助10
刚刚
张锐斌发布了新的文献求助10
刚刚
量子星尘发布了新的文献求助10
刚刚
爱听歌安彤完成签到,获得积分10
1秒前
lxt完成签到,获得积分10
1秒前
1秒前
1秒前
aaa完成签到,获得积分10
1秒前
xixixi完成签到,获得积分10
1秒前
Akim应助Fezco采纳,获得10
1秒前
sisi完成签到,获得积分10
1秒前
lyy发布了新的文献求助10
1秒前
时冬冬应助daiduo采纳,获得20
2秒前
小徐801完成签到,获得积分10
2秒前
yszyy23完成签到,获得积分10
2秒前
善学以致用应助yangshu采纳,获得10
2秒前
自信的寄凡完成签到 ,获得积分20
3秒前
朴素臻完成签到,获得积分10
3秒前
可爱的小树苗完成签到,获得积分10
3秒前
4秒前
yeguo完成签到,获得积分10
4秒前
kenny完成签到,获得积分10
4秒前
轻舟空渡完成签到,获得积分10
4秒前
Mandy发布了新的文献求助10
4秒前
叶远望完成签到,获得积分10
4秒前
Daisy发布了新的文献求助10
5秒前
夕荀发布了新的文献求助10
5秒前
Min完成签到,获得积分10
6秒前
楠阿楠完成签到 ,获得积分10
6秒前
子车茗应助哇哈哈哈哈哈采纳,获得30
6秒前
6秒前
头哥应助MiManchi采纳,获得10
7秒前
李健应助zz采纳,获得10
7秒前
7秒前
7秒前
重楼远志完成签到,获得积分10
7秒前
123完成签到,获得积分10
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573926
求助须知:如何正确求助?哪些是违规求助? 4660203
关于积分的说明 14728382
捐赠科研通 4599980
什么是DOI,文献DOI怎么找? 2524638
邀请新用户注册赠送积分活动 1494989
关于科研通互助平台的介绍 1465005