亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Fabric Defect Segmentation Model Based on Improved Swin-Unet with Gabor Filter

计算机科学 人工智能 Gabor滤波器 分割 模式识别(心理学) 计算机视觉 特征提取
作者
Haitao Xu,Chengming Liu,Shuya Duan,Liangpin Ren,Guozhen Cheng,Bing Hao
出处
期刊:Applied sciences [MDPI AG]
卷期号:13 (20): 11386-11386 被引量:2
标识
DOI:10.3390/app132011386
摘要

Fabric inspection is critical in fabric manufacturing. Automatic detection of fabric defects in the textile industry has always been an important research field. Previously, manual visual inspection was commonly used; however, there were drawbacks such as high labor costs, slow detection speed, and high error rates. Recently, many defect detection methods based on deep learning have been proposed. However, problems need to be solved in the existing methods, such as detection accuracy and interference of complex background textures. In this paper, we propose an efficient segmentation algorithm that combines traditional operators with deep learning networks to alleviate the existing problems. Specifically, we introduce a Gabor filter into the model, which provides the unique advantage of extracting low-level texture features to solve the problem of texture interference and enable the algorithm to converge quickly in the early stages of training. Furthermore, we design a U-shaped architecture that is not completely symmetrical, making model training easier. Meanwhile, multi-stage result fusion is proposed for precise location of defects. The design of this framework significantly improves the detection accuracy and effectively breaks through the limitations of transformer-based models. Experimental results show that on a dataset with one class, a small amount of data, and complex sample background texture, our method achieved 90.03% and 33.70% in ACC and IoU, respectively, which is almost 10% higher than other previous state of the art models. Experimental results based on three different fabric datasets consistently show that the proposed model has excellent performance and great application potential in the industrial field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助yue采纳,获得10
刚刚
xuxu125678完成签到 ,获得积分10
11秒前
兴奋的菠萝完成签到,获得积分10
19秒前
gkads举报孙慧敏求助涉嫌违规
21秒前
22秒前
tang完成签到,获得积分10
23秒前
tang发布了新的文献求助10
27秒前
miooo完成签到,获得积分20
34秒前
41秒前
miooo发布了新的文献求助20
45秒前
jama117关注了科研通微信公众号
1分钟前
努力努力再努力完成签到,获得积分10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
jama117发布了新的文献求助10
1分钟前
踏实的梦松完成签到,获得积分10
1分钟前
2分钟前
欣欣完成签到 ,获得积分10
2分钟前
ryf发布了新的文献求助10
2分钟前
Yy完成签到,获得积分10
2分钟前
2分钟前
wandali发布了新的文献求助30
2分钟前
raki完成签到,获得积分10
2分钟前
zqq完成签到,获得积分0
2分钟前
2分钟前
Jasper应助YZChen采纳,获得10
2分钟前
2分钟前
沐沐发布了新的文献求助10
2分钟前
raki发布了新的文献求助10
2分钟前
kokishi完成签到,获得积分10
3分钟前
jama117完成签到,获得积分10
3分钟前
养乐多敬你完成签到 ,获得积分10
3分钟前
3分钟前
沐沐完成签到,获得积分10
3分钟前
HalloYa完成签到 ,获得积分10
3分钟前
麻薯头头发布了新的文献求助10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Routledge Handbook on Spaces of Mental Health and Wellbeing 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5323855
求助须知:如何正确求助?哪些是违规求助? 4464982
关于积分的说明 13893929
捐赠科研通 4356611
什么是DOI,文献DOI怎么找? 2392945
邀请新用户注册赠送积分活动 1386490
关于科研通互助平台的介绍 1356620