A Fabric Defect Segmentation Model Based on Improved Swin-Unet with Gabor Filter

计算机科学 人工智能 Gabor滤波器 分割 模式识别(心理学) 计算机视觉 特征提取
作者
Haitao Xu,Chengming Liu,Shuya Duan,Liangpin Ren,Guozhen Cheng,Bing Hao
出处
期刊:Applied sciences [Multidisciplinary Digital Publishing Institute]
卷期号:13 (20): 11386-11386 被引量:2
标识
DOI:10.3390/app132011386
摘要

Fabric inspection is critical in fabric manufacturing. Automatic detection of fabric defects in the textile industry has always been an important research field. Previously, manual visual inspection was commonly used; however, there were drawbacks such as high labor costs, slow detection speed, and high error rates. Recently, many defect detection methods based on deep learning have been proposed. However, problems need to be solved in the existing methods, such as detection accuracy and interference of complex background textures. In this paper, we propose an efficient segmentation algorithm that combines traditional operators with deep learning networks to alleviate the existing problems. Specifically, we introduce a Gabor filter into the model, which provides the unique advantage of extracting low-level texture features to solve the problem of texture interference and enable the algorithm to converge quickly in the early stages of training. Furthermore, we design a U-shaped architecture that is not completely symmetrical, making model training easier. Meanwhile, multi-stage result fusion is proposed for precise location of defects. The design of this framework significantly improves the detection accuracy and effectively breaks through the limitations of transformer-based models. Experimental results show that on a dataset with one class, a small amount of data, and complex sample background texture, our method achieved 90.03% and 33.70% in ACC and IoU, respectively, which is almost 10% higher than other previous state of the art models. Experimental results based on three different fabric datasets consistently show that the proposed model has excellent performance and great application potential in the industrial field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小可爱发布了新的文献求助10
2秒前
研友_VZG7GZ应助TT2022采纳,获得30
6秒前
7秒前
白日幻想家完成签到 ,获得积分10
7秒前
7秒前
不期发布了新的文献求助10
9秒前
11秒前
开朗的尔风完成签到,获得积分20
11秒前
华仔应助zhangzhi采纳,获得10
12秒前
13秒前
正直的夏真完成签到,获得积分10
14秒前
陈旧完成签到,获得积分10
14秒前
lxg完成签到,获得积分10
15秒前
15秒前
16秒前
整齐乐驹完成签到,获得积分10
18秒前
冷傲魔镜发布了新的文献求助10
18秒前
YY发布了新的文献求助30
22秒前
meng发布了新的文献求助10
22秒前
大力的行云完成签到,获得积分10
24秒前
24秒前
25秒前
wq完成签到,获得积分20
27秒前
田様应助lzj001983采纳,获得10
28秒前
29秒前
舒心凝阳完成签到,获得积分10
29秒前
zhangzhi发布了新的文献求助10
30秒前
溫蒂完成签到,获得积分10
30秒前
雪满头完成签到,获得积分0
31秒前
香蕉觅云应助冷傲魔镜采纳,获得10
32秒前
11发布了新的文献求助10
33秒前
34秒前
34秒前
xx发布了新的文献求助20
37秒前
jx314发布了新的文献求助10
38秒前
俊逸依丝发布了新的文献求助10
41秒前
41秒前
动听的菠萝完成签到,获得积分10
42秒前
夏侯德东完成签到,获得积分10
42秒前
43秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3994080
求助须知:如何正确求助?哪些是违规求助? 3534628
关于积分的说明 11266093
捐赠科研通 3274554
什么是DOI,文献DOI怎么找? 1806388
邀请新用户注册赠送积分活动 883254
科研通“疑难数据库(出版商)”最低求助积分说明 809724