A Fabric Defect Segmentation Model Based on Improved Swin-Unet with Gabor Filter

计算机科学 人工智能 Gabor滤波器 分割 模式识别(心理学) 计算机视觉 特征提取
作者
Haitao Xu,Chengming Liu,Shuya Duan,Liangpin Ren,Guozhen Cheng,Bing Hao
出处
期刊:Applied sciences [MDPI AG]
卷期号:13 (20): 11386-11386 被引量:2
标识
DOI:10.3390/app132011386
摘要

Fabric inspection is critical in fabric manufacturing. Automatic detection of fabric defects in the textile industry has always been an important research field. Previously, manual visual inspection was commonly used; however, there were drawbacks such as high labor costs, slow detection speed, and high error rates. Recently, many defect detection methods based on deep learning have been proposed. However, problems need to be solved in the existing methods, such as detection accuracy and interference of complex background textures. In this paper, we propose an efficient segmentation algorithm that combines traditional operators with deep learning networks to alleviate the existing problems. Specifically, we introduce a Gabor filter into the model, which provides the unique advantage of extracting low-level texture features to solve the problem of texture interference and enable the algorithm to converge quickly in the early stages of training. Furthermore, we design a U-shaped architecture that is not completely symmetrical, making model training easier. Meanwhile, multi-stage result fusion is proposed for precise location of defects. The design of this framework significantly improves the detection accuracy and effectively breaks through the limitations of transformer-based models. Experimental results show that on a dataset with one class, a small amount of data, and complex sample background texture, our method achieved 90.03% and 33.70% in ACC and IoU, respectively, which is almost 10% higher than other previous state of the art models. Experimental results based on three different fabric datasets consistently show that the proposed model has excellent performance and great application potential in the industrial field.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
鱼仔发布了新的文献求助10
1秒前
lulufighting发布了新的文献求助10
1秒前
1秒前
yeeeee完成签到,获得积分10
1秒前
2秒前
Akim应助美好斓采纳,获得10
4秒前
高贵的迎蕾完成签到 ,获得积分10
4秒前
充电宝应助健壮夏山采纳,获得10
5秒前
5秒前
5秒前
7秒前
小徐同志完成签到,获得积分10
7秒前
yfn应助鲜艳的月饼采纳,获得10
8秒前
Rabbit完成签到 ,获得积分10
8秒前
Yuanyuan发布了新的文献求助10
8秒前
奶奶的龙应助tkx是流氓兔采纳,获得30
9秒前
10秒前
BowieHuang应助哈哈哈哈呵采纳,获得30
11秒前
11秒前
量子星尘发布了新的文献求助10
13秒前
hui完成签到,获得积分20
14秒前
zzc发布了新的文献求助10
14秒前
14秒前
健壮夏山完成签到,获得积分10
14秒前
15秒前
斯文念波完成签到,获得积分20
15秒前
15秒前
罗伊黄完成签到 ,获得积分10
15秒前
15秒前
melo发布了新的文献求助10
16秒前
16秒前
完美戒指发布了新的文献求助10
16秒前
17秒前
健壮夏山发布了新的文献求助10
18秒前
斯文念波发布了新的文献求助10
18秒前
19秒前
zm关闭了zm文献求助
19秒前
年把月拥有完成签到,获得积分10
21秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5729141
求助须知:如何正确求助?哪些是违规求助? 5316369
关于积分的说明 15315857
捐赠科研通 4876150
什么是DOI,文献DOI怎么找? 2619263
邀请新用户注册赠送积分活动 1568820
关于科研通互助平台的介绍 1525317