A Fabric Defect Segmentation Model Based on Improved Swin-Unet with Gabor Filter

计算机科学 人工智能 Gabor滤波器 分割 模式识别(心理学) 计算机视觉 特征提取
作者
Haitao Xu,Chengming Liu,Shuya Duan,Liangpin Ren,Guozhen Cheng,Bing Hao
出处
期刊:Applied sciences [MDPI AG]
卷期号:13 (20): 11386-11386 被引量:1
标识
DOI:10.3390/app132011386
摘要

Fabric inspection is critical in fabric manufacturing. Automatic detection of fabric defects in the textile industry has always been an important research field. Previously, manual visual inspection was commonly used; however, there were drawbacks such as high labor costs, slow detection speed, and high error rates. Recently, many defect detection methods based on deep learning have been proposed. However, problems need to be solved in the existing methods, such as detection accuracy and interference of complex background textures. In this paper, we propose an efficient segmentation algorithm that combines traditional operators with deep learning networks to alleviate the existing problems. Specifically, we introduce a Gabor filter into the model, which provides the unique advantage of extracting low-level texture features to solve the problem of texture interference and enable the algorithm to converge quickly in the early stages of training. Furthermore, we design a U-shaped architecture that is not completely symmetrical, making model training easier. Meanwhile, multi-stage result fusion is proposed for precise location of defects. The design of this framework significantly improves the detection accuracy and effectively breaks through the limitations of transformer-based models. Experimental results show that on a dataset with one class, a small amount of data, and complex sample background texture, our method achieved 90.03% and 33.70% in ACC and IoU, respectively, which is almost 10% higher than other previous state of the art models. Experimental results based on three different fabric datasets consistently show that the proposed model has excellent performance and great application potential in the industrial field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冰姗完成签到,获得积分10
刚刚
执着的梦发布了新的文献求助10
刚刚
李健的粉丝团团长应助wuyu采纳,获得10
刚刚
姚语蓉发布了新的文献求助10
1秒前
1秒前
坚定的老六完成签到,获得积分10
2秒前
bsnc发布了新的文献求助30
2秒前
goodsheep完成签到 ,获得积分10
2秒前
maorongfu456完成签到,获得积分10
2秒前
上官若男应助1364135702采纳,获得10
2秒前
3秒前
高越发布了新的文献求助10
3秒前
呢n发布了新的文献求助10
3秒前
缥缈诺言完成签到,获得积分10
3秒前
甜甜玫瑰应助hello采纳,获得10
3秒前
打打应助hello采纳,获得30
3秒前
大个应助zhichuanwei采纳,获得10
4秒前
黑祎菲完成签到,获得积分20
4秒前
4秒前
eternity136发布了新的文献求助50
4秒前
搜集达人应助科研通管家采纳,获得10
4秒前
不赖床的科研狗完成签到,获得积分10
5秒前
共享精神应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
潇洒诗槐发布了新的文献求助10
5秒前
斯文败类应助科研通管家采纳,获得10
5秒前
汉堡包应助科研通管家采纳,获得10
5秒前
XL完成签到,获得积分20
5秒前
桐桐应助科研通管家采纳,获得10
5秒前
FashionBoy应助科研通管家采纳,获得20
5秒前
自觉紫安发布了新的文献求助10
5秒前
丘比特应助科研通管家采纳,获得10
5秒前
凹凸蔓完成签到,获得积分10
5秒前
Ava应助科研通管家采纳,获得10
5秒前
华仔应助科研通管家采纳,获得10
5秒前
xiaoGuo应助科研通管家采纳,获得30
5秒前
星辰大海应助科研通管家采纳,获得10
5秒前
所所应助科研通管家采纳,获得10
5秒前
打打应助科研通管家采纳,获得10
5秒前
我是老大应助科研通管家采纳,获得10
6秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156450
求助须知:如何正确求助?哪些是违规求助? 2807921
关于积分的说明 7875266
捐赠科研通 2466226
什么是DOI,文献DOI怎么找? 1312727
科研通“疑难数据库(出版商)”最低求助积分说明 630255
版权声明 601919