已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Fabric Defect Segmentation Model Based on Improved Swin-Unet with Gabor Filter

计算机科学 人工智能 Gabor滤波器 分割 模式识别(心理学) 计算机视觉 特征提取
作者
Haitao Xu,Chengming Liu,Shuya Duan,Liangpin Ren,Guozhen Cheng,Bing Hao
出处
期刊:Applied sciences [MDPI AG]
卷期号:13 (20): 11386-11386 被引量:2
标识
DOI:10.3390/app132011386
摘要

Fabric inspection is critical in fabric manufacturing. Automatic detection of fabric defects in the textile industry has always been an important research field. Previously, manual visual inspection was commonly used; however, there were drawbacks such as high labor costs, slow detection speed, and high error rates. Recently, many defect detection methods based on deep learning have been proposed. However, problems need to be solved in the existing methods, such as detection accuracy and interference of complex background textures. In this paper, we propose an efficient segmentation algorithm that combines traditional operators with deep learning networks to alleviate the existing problems. Specifically, we introduce a Gabor filter into the model, which provides the unique advantage of extracting low-level texture features to solve the problem of texture interference and enable the algorithm to converge quickly in the early stages of training. Furthermore, we design a U-shaped architecture that is not completely symmetrical, making model training easier. Meanwhile, multi-stage result fusion is proposed for precise location of defects. The design of this framework significantly improves the detection accuracy and effectively breaks through the limitations of transformer-based models. Experimental results show that on a dataset with one class, a small amount of data, and complex sample background texture, our method achieved 90.03% and 33.70% in ACC and IoU, respectively, which is almost 10% higher than other previous state of the art models. Experimental results based on three different fabric datasets consistently show that the proposed model has excellent performance and great application potential in the industrial field.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
震动的平松完成签到 ,获得积分10
1秒前
2秒前
古月完成签到 ,获得积分10
4秒前
7秒前
等意送汝完成签到 ,获得积分10
7秒前
张怡博发布了新的文献求助10
7秒前
Worenxian完成签到 ,获得积分10
7秒前
heroicsheng完成签到,获得积分10
10秒前
oleskarabach发布了新的文献求助10
13秒前
16秒前
xiuxiu完成签到 ,获得积分10
16秒前
ljj001ljj完成签到,获得积分10
21秒前
26秒前
28秒前
yx发布了新的文献求助10
32秒前
34秒前
34秒前
充电宝应助阿鲁巴采纳,获得10
35秒前
LLL完成签到,获得积分20
36秒前
w6c6y6发布了新的文献求助20
38秒前
xiaoxiao完成签到 ,获得积分10
38秒前
冬柳发布了新的文献求助10
39秒前
Orange应助无限铸海采纳,获得10
39秒前
科研通AI6应助罗鹏采纳,获得10
41秒前
enenenen89完成签到,获得积分10
44秒前
大模型应助w6c6y6采纳,获得20
45秒前
46秒前
46秒前
ljj001ljj发布了新的文献求助20
48秒前
无限铸海发布了新的文献求助10
52秒前
52秒前
诚心爆米花完成签到 ,获得积分10
55秒前
Ken完成签到,获得积分10
56秒前
流萤发布了新的文献求助10
57秒前
he完成签到,获得积分10
57秒前
笔面第一关注了科研通微信公众号
58秒前
科研通AI6应助Lida采纳,获得10
58秒前
59秒前
情怀应助huayi采纳,获得10
59秒前
流萤完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5522409
求助须知:如何正确求助?哪些是违规求助? 4613410
关于积分的说明 14538809
捐赠科研通 4551142
什么是DOI,文献DOI怎么找? 2494023
邀请新用户注册赠送积分活动 1475048
关于科研通互助平台的介绍 1446408