亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

EfficientNetV2 based for MRI brain tumor image classification

计算机科学 脑瘤 人工智能 可视化 范畴变量 机器学习 模式识别(心理学) 熵(时间箭头) 混淆矩阵 过程(计算) 数据挖掘 量子力学 医学 操作系统 物理 病理
作者
A. A. Waskita,Julfa Muhammad Amda,Dwi Seno Kuncoro Sihono,Heru Prasetio
标识
DOI:10.1109/ic3ina60834.2023.10285782
摘要

An accurate and timely diagnosis is of utmost importance when it comes to treating brain tumors effectively. To facilitate this process, we have developed a brain tumor classification approach that employs transfer learning using a pre-trained version of the EfficientNet V2 model. Our dataset comprises brain tumor images that have been categorized into four distinct labels: tumor (glioma, meningioma, pituitary) and normal. As our base model, we employed the EfficientNet V2 model with variations of B0, B1, B2, and B3 for experiments. To adapt the model to our number of label categories, we modified the final layer and retrained it on our dataset. Our optimization process involved using Adam's algorithm and the categorical cross-entropy loss function. We conducted experiments in multiple stages, which involved randomizing the dataset, pre-processing, training the model, and evaluating the results. During the evaluation, we used appropriate metrics to assess the accuracy and loss of the test data. Furthermore, we analyzed the performance of the model by visualizing the loss and accuracy curves throughout the training process. Our extensive experimentation involving dataset randomization, pre-processing, model training, and evaluation has yielded remarkable results. Through relevant evaluation metrics and visualization of loss and accuracy curves, we have achieved impressive accuracy and loss rates on test data. Our research has led us to the successful classification of brain tumors using the EfficientNet V2 models with B0, B1, B2, and B3 variations. Additionally, our use of a confusion matrix has allowed us to assess the classification ability of each tumor category. This breakthrough research has the potential to greatly enhance medical diagnosis by utilizing transfer learning techniques and pre-trained models. We hope that this approach can help detect and treat brain tumors in their early stages, ultimately leading to better patient outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
21秒前
李健的粉丝团团长应助lzzz采纳,获得10
55秒前
58秒前
刘紫媛发布了新的文献求助10
1分钟前
Raul完成签到 ,获得积分10
1分钟前
lql完成签到 ,获得积分10
1分钟前
可爱的函函应助鲅鱼圈采纳,获得10
2分钟前
2分钟前
lzzz发布了新的文献求助10
2分钟前
英喆完成签到 ,获得积分10
2分钟前
我是老大应助畅快的毛衣采纳,获得10
3分钟前
3分钟前
3分钟前
鲅鱼圈发布了新的文献求助10
3分钟前
3分钟前
Leofar完成签到 ,获得积分10
3分钟前
3分钟前
鲅鱼圈完成签到,获得积分10
3分钟前
h0jian09完成签到,获得积分10
3分钟前
BaooooooMao完成签到,获得积分10
4分钟前
愉快的犀牛完成签到 ,获得积分10
4分钟前
Sunny完成签到,获得积分10
4分钟前
yujie完成签到 ,获得积分10
4分钟前
赘婿应助科研通管家采纳,获得10
5分钟前
5分钟前
西柚柠檬完成签到 ,获得积分10
5分钟前
心系天下完成签到 ,获得积分10
5分钟前
Alex-Song完成签到 ,获得积分0
5分钟前
不秃燃的小老弟完成签到 ,获得积分10
6分钟前
7分钟前
Owen应助科研通管家采纳,获得10
7分钟前
年年有余完成签到,获得积分10
7分钟前
胖小羊完成签到 ,获得积分10
8分钟前
9分钟前
领导范儿应助科研通管家采纳,获得10
9分钟前
9分钟前
juan完成签到 ,获得积分10
10分钟前
学术小垃圾完成签到,获得积分10
10分钟前
叁月二完成签到 ,获得积分10
10分钟前
10分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3990447
求助须知:如何正确求助?哪些是违规求助? 3532166
关于积分的说明 11256513
捐赠科研通 3271046
什么是DOI,文献DOI怎么找? 1805207
邀请新用户注册赠送积分活动 882302
科研通“疑难数据库(出版商)”最低求助积分说明 809234