EfficientNetV2 based for MRI brain tumor image classification

计算机科学 脑瘤 人工智能 可视化 范畴变量 机器学习 模式识别(心理学) 熵(时间箭头) 混淆矩阵 过程(计算) 数据挖掘 量子力学 医学 操作系统 物理 病理
作者
A. A. Waskita,Julfa Muhammad Amda,Dwi Seno Kuncoro Sihono,Heru Prasetio
标识
DOI:10.1109/ic3ina60834.2023.10285782
摘要

An accurate and timely diagnosis is of utmost importance when it comes to treating brain tumors effectively. To facilitate this process, we have developed a brain tumor classification approach that employs transfer learning using a pre-trained version of the EfficientNet V2 model. Our dataset comprises brain tumor images that have been categorized into four distinct labels: tumor (glioma, meningioma, pituitary) and normal. As our base model, we employed the EfficientNet V2 model with variations of B0, B1, B2, and B3 for experiments. To adapt the model to our number of label categories, we modified the final layer and retrained it on our dataset. Our optimization process involved using Adam's algorithm and the categorical cross-entropy loss function. We conducted experiments in multiple stages, which involved randomizing the dataset, pre-processing, training the model, and evaluating the results. During the evaluation, we used appropriate metrics to assess the accuracy and loss of the test data. Furthermore, we analyzed the performance of the model by visualizing the loss and accuracy curves throughout the training process. Our extensive experimentation involving dataset randomization, pre-processing, model training, and evaluation has yielded remarkable results. Through relevant evaluation metrics and visualization of loss and accuracy curves, we have achieved impressive accuracy and loss rates on test data. Our research has led us to the successful classification of brain tumors using the EfficientNet V2 models with B0, B1, B2, and B3 variations. Additionally, our use of a confusion matrix has allowed us to assess the classification ability of each tumor category. This breakthrough research has the potential to greatly enhance medical diagnosis by utilizing transfer learning techniques and pre-trained models. We hope that this approach can help detect and treat brain tumors in their early stages, ultimately leading to better patient outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
莎莎士比亚完成签到,获得积分10
刚刚
LOST完成签到 ,获得积分10
刚刚
1秒前
袁凯文发布了新的文献求助10
1秒前
共享精神应助老菜鸟321采纳,获得10
1秒前
WUWEI发布了新的文献求助10
2秒前
xiaoW完成签到,获得积分10
2秒前
4秒前
牛太虚完成签到,获得积分10
4秒前
SciGPT应助科多兽骑士采纳,获得10
4秒前
6秒前
gjm完成签到,获得积分10
6秒前
SciGPT应助zj采纳,获得10
7秒前
Ava应助阿湫采纳,获得10
7秒前
meng123完成签到,获得积分20
8秒前
x5kyi完成签到,获得积分10
9秒前
爆米花应助肖遥采纳,获得10
10秒前
Xx完成签到,获得积分10
10秒前
10秒前
13秒前
烟里戏完成签到 ,获得积分10
15秒前
shuangfeng1853完成签到 ,获得积分10
15秒前
林子青发布了新的文献求助10
15秒前
16秒前
aa完成签到,获得积分10
16秒前
CXC完成签到,获得积分10
16秒前
18秒前
Zzz发布了新的文献求助10
18秒前
上官若男应助袁凯文采纳,获得10
19秒前
19秒前
褚晣完成签到,获得积分10
19秒前
ATTENTION完成签到,获得积分10
20秒前
20秒前
周欣玙完成签到,获得积分10
20秒前
20秒前
学不懂数学应助as采纳,获得30
20秒前
传奇3应助YiWei采纳,获得10
21秒前
阿湫发布了新的文献求助10
21秒前
why完成签到,获得积分10
21秒前
21秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038524
求助须知:如何正确求助?哪些是违规求助? 3576221
关于积分的说明 11374737
捐赠科研通 3305912
什么是DOI,文献DOI怎么找? 1819354
邀请新用户注册赠送积分活动 892688
科研通“疑难数据库(出版商)”最低求助积分说明 815048