EfficientNetV2 based for MRI brain tumor image classification

计算机科学 脑瘤 人工智能 可视化 范畴变量 机器学习 模式识别(心理学) 熵(时间箭头) 混淆矩阵 过程(计算) 数据挖掘 量子力学 医学 操作系统 物理 病理
作者
A. A. Waskita,Julfa Muhammad Amda,Dwi Seno Kuncoro Sihono,Heru Prasetio
标识
DOI:10.1109/ic3ina60834.2023.10285782
摘要

An accurate and timely diagnosis is of utmost importance when it comes to treating brain tumors effectively. To facilitate this process, we have developed a brain tumor classification approach that employs transfer learning using a pre-trained version of the EfficientNet V2 model. Our dataset comprises brain tumor images that have been categorized into four distinct labels: tumor (glioma, meningioma, pituitary) and normal. As our base model, we employed the EfficientNet V2 model with variations of B0, B1, B2, and B3 for experiments. To adapt the model to our number of label categories, we modified the final layer and retrained it on our dataset. Our optimization process involved using Adam's algorithm and the categorical cross-entropy loss function. We conducted experiments in multiple stages, which involved randomizing the dataset, pre-processing, training the model, and evaluating the results. During the evaluation, we used appropriate metrics to assess the accuracy and loss of the test data. Furthermore, we analyzed the performance of the model by visualizing the loss and accuracy curves throughout the training process. Our extensive experimentation involving dataset randomization, pre-processing, model training, and evaluation has yielded remarkable results. Through relevant evaluation metrics and visualization of loss and accuracy curves, we have achieved impressive accuracy and loss rates on test data. Our research has led us to the successful classification of brain tumors using the EfficientNet V2 models with B0, B1, B2, and B3 variations. Additionally, our use of a confusion matrix has allowed us to assess the classification ability of each tumor category. This breakthrough research has the potential to greatly enhance medical diagnosis by utilizing transfer learning techniques and pre-trained models. We hope that this approach can help detect and treat brain tumors in their early stages, ultimately leading to better patient outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
灵犀完成签到,获得积分10
刚刚
ttssooe发布了新的文献求助10
刚刚
CipherSage应助Ll采纳,获得10
1秒前
1秒前
千里发布了新的文献求助10
1秒前
Mia发布了新的文献求助20
2秒前
女神金发布了新的文献求助60
2秒前
2秒前
puny完成签到,获得积分10
2秒前
2秒前
彭于晏应助zhonghbush采纳,获得10
2秒前
啦啦啦啦啦完成签到,获得积分10
3秒前
hmx完成签到,获得积分10
3秒前
忧郁的人英完成签到 ,获得积分10
3秒前
3秒前
3秒前
3秒前
xhy发布了新的文献求助10
3秒前
晴天霹雳3732完成签到,获得积分0
4秒前
carbonhan完成签到,获得积分10
4秒前
MJT10086完成签到,获得积分10
4秒前
4秒前
天天快乐应助阿楠采纳,获得10
5秒前
忧郁的听露完成签到,获得积分20
5秒前
宇文天川完成签到,获得积分10
6秒前
6秒前
三十三完成签到,获得积分10
6秒前
顾矜应助li采纳,获得10
6秒前
6秒前
久久发布了新的文献求助10
7秒前
蔡小葵完成签到 ,获得积分10
7秒前
7秒前
科目三应助cd采纳,获得10
8秒前
研友_LXOvq8完成签到,获得积分10
8秒前
xu完成签到,获得积分10
8秒前
祝雲发布了新的文献求助10
8秒前
鳗鱼灵寒完成签到 ,获得积分10
8秒前
9秒前
9秒前
从这完成签到,获得积分10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672