已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

EfficientNetV2 based for MRI brain tumor image classification

计算机科学 脑瘤 人工智能 可视化 范畴变量 机器学习 模式识别(心理学) 熵(时间箭头) 混淆矩阵 过程(计算) 数据挖掘 量子力学 医学 操作系统 物理 病理
作者
A. A. Waskita,Julfa Muhammad Amda,Dwi Seno Kuncoro Sihono,Heru Prasetio
标识
DOI:10.1109/ic3ina60834.2023.10285782
摘要

An accurate and timely diagnosis is of utmost importance when it comes to treating brain tumors effectively. To facilitate this process, we have developed a brain tumor classification approach that employs transfer learning using a pre-trained version of the EfficientNet V2 model. Our dataset comprises brain tumor images that have been categorized into four distinct labels: tumor (glioma, meningioma, pituitary) and normal. As our base model, we employed the EfficientNet V2 model with variations of B0, B1, B2, and B3 for experiments. To adapt the model to our number of label categories, we modified the final layer and retrained it on our dataset. Our optimization process involved using Adam's algorithm and the categorical cross-entropy loss function. We conducted experiments in multiple stages, which involved randomizing the dataset, pre-processing, training the model, and evaluating the results. During the evaluation, we used appropriate metrics to assess the accuracy and loss of the test data. Furthermore, we analyzed the performance of the model by visualizing the loss and accuracy curves throughout the training process. Our extensive experimentation involving dataset randomization, pre-processing, model training, and evaluation has yielded remarkable results. Through relevant evaluation metrics and visualization of loss and accuracy curves, we have achieved impressive accuracy and loss rates on test data. Our research has led us to the successful classification of brain tumors using the EfficientNet V2 models with B0, B1, B2, and B3 variations. Additionally, our use of a confusion matrix has allowed us to assess the classification ability of each tumor category. This breakthrough research has the potential to greatly enhance medical diagnosis by utilizing transfer learning techniques and pre-trained models. We hope that this approach can help detect and treat brain tumors in their early stages, ultimately leading to better patient outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yanzilin完成签到 ,获得积分10
3秒前
Bob发布了新的文献求助10
4秒前
自觉匪完成签到 ,获得积分10
5秒前
锦云完成签到,获得积分10
6秒前
神勇的荟完成签到 ,获得积分10
8秒前
awu完成签到 ,获得积分10
8秒前
11秒前
十有五完成签到,获得积分10
12秒前
糖霜烤面包完成签到 ,获得积分10
14秒前
KLYIT发布了新的文献求助10
16秒前
是多多呀完成签到 ,获得积分10
19秒前
不知道完成签到 ,获得积分10
21秒前
北辰zdx完成签到,获得积分10
21秒前
山东老铁完成签到,获得积分10
30秒前
阿拉哈哈笑完成签到,获得积分10
32秒前
有趣的桃完成签到,获得积分10
33秒前
土豪的洋葱完成签到,获得积分10
36秒前
映泧发布了新的文献求助10
38秒前
39秒前
Bowman完成签到,获得积分10
40秒前
123完成签到,获得积分10
42秒前
贰壹完成签到 ,获得积分10
42秒前
今后应助科研通管家采纳,获得10
42秒前
NSS发布了新的文献求助10
42秒前
GingerF应助科研通管家采纳,获得100
42秒前
爆米花应助科研通管家采纳,获得10
42秒前
浮游应助科研通管家采纳,获得10
42秒前
浮游应助科研通管家采纳,获得10
42秒前
华仔应助科研通管家采纳,获得10
42秒前
阳光的紫丝完成签到,获得积分10
44秒前
千纸鹤完成签到 ,获得积分10
46秒前
47秒前
48秒前
敬业乐群完成签到,获得积分10
49秒前
50秒前
55秒前
58秒前
002完成签到,获得积分10
59秒前
董羽佳完成签到,获得积分10
1分钟前
咪咪完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5290974
求助须知:如何正确求助?哪些是违规求助? 4442178
关于积分的说明 13829448
捐赠科研通 4325091
什么是DOI,文献DOI怎么找? 2373956
邀请新用户注册赠送积分活动 1369349
关于科研通互助平台的介绍 1333483