已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

EfficientNetV2 based for MRI brain tumor image classification

计算机科学 脑瘤 人工智能 可视化 范畴变量 机器学习 模式识别(心理学) 熵(时间箭头) 混淆矩阵 过程(计算) 数据挖掘 量子力学 医学 操作系统 物理 病理
作者
A. A. Waskita,Julfa Muhammad Amda,Dwi Seno Kuncoro Sihono,Heru Prasetio
标识
DOI:10.1109/ic3ina60834.2023.10285782
摘要

An accurate and timely diagnosis is of utmost importance when it comes to treating brain tumors effectively. To facilitate this process, we have developed a brain tumor classification approach that employs transfer learning using a pre-trained version of the EfficientNet V2 model. Our dataset comprises brain tumor images that have been categorized into four distinct labels: tumor (glioma, meningioma, pituitary) and normal. As our base model, we employed the EfficientNet V2 model with variations of B0, B1, B2, and B3 for experiments. To adapt the model to our number of label categories, we modified the final layer and retrained it on our dataset. Our optimization process involved using Adam's algorithm and the categorical cross-entropy loss function. We conducted experiments in multiple stages, which involved randomizing the dataset, pre-processing, training the model, and evaluating the results. During the evaluation, we used appropriate metrics to assess the accuracy and loss of the test data. Furthermore, we analyzed the performance of the model by visualizing the loss and accuracy curves throughout the training process. Our extensive experimentation involving dataset randomization, pre-processing, model training, and evaluation has yielded remarkable results. Through relevant evaluation metrics and visualization of loss and accuracy curves, we have achieved impressive accuracy and loss rates on test data. Our research has led us to the successful classification of brain tumors using the EfficientNet V2 models with B0, B1, B2, and B3 variations. Additionally, our use of a confusion matrix has allowed us to assess the classification ability of each tumor category. This breakthrough research has the potential to greatly enhance medical diagnosis by utilizing transfer learning techniques and pre-trained models. We hope that this approach can help detect and treat brain tumors in their early stages, ultimately leading to better patient outcomes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
4秒前
4秒前
6秒前
貔貅发布了新的文献求助10
7秒前
fufu完成签到 ,获得积分20
7秒前
8秒前
神明发布了新的文献求助10
9秒前
科目三应助镜哥采纳,获得30
10秒前
Pp发布了新的文献求助10
10秒前
ffff发布了新的文献求助10
11秒前
13秒前
由清涟发布了新的文献求助10
15秒前
请输入昵称完成签到 ,获得积分10
15秒前
脑洞疼应助神明采纳,获得30
15秒前
大个应助ffff采纳,获得10
22秒前
tt完成签到 ,获得积分10
23秒前
24秒前
健忘的金完成签到 ,获得积分10
28秒前
周墨完成签到 ,获得积分10
29秒前
30秒前
英俊的铭应助读书的时候采纳,获得30
30秒前
31秒前
顾矜应助由清涟采纳,获得30
31秒前
科研通AI6.1应助wang采纳,获得10
33秒前
芽芽豆完成签到 ,获得积分10
33秒前
Freedom完成签到 ,获得积分10
33秒前
yihuifa完成签到 ,获得积分10
34秒前
34秒前
34秒前
34秒前
苏11发布了新的文献求助10
35秒前
35秒前
zhangwj226完成签到,获得积分10
36秒前
遇上就这样吧完成签到,获得积分0
36秒前
奎奎完成签到 ,获得积分10
36秒前
40秒前
42秒前
小莹子发布了新的文献求助30
44秒前
45秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
„Semitische Wissenschaften“? 1110
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5738936
求助须知:如何正确求助?哪些是违规求助? 5381771
关于积分的说明 15338906
捐赠科研通 4881720
什么是DOI,文献DOI怎么找? 2623864
邀请新用户注册赠送积分活动 1572542
关于科研通互助平台的介绍 1529309