Sleep Testing and Mortality in a Propensity-matched Cohort of Patients with Chronic Obstructive Pulmonary Disease

医学 倾向得分匹配 慢性阻塞性肺病 混淆 内科学 队列 队列研究
作者
Lucas M. Donovan,T. Hee Wai,Laura J Spece,Kevin Duan,Matthew Griffith,Aristotle Leonhard,Robert Plumley,Sophia A. Hayes,Fernando Picazo,Kristina Crothers,Vishesh K. Kapur,Brian Palen,David H. Au,Laura C. Feemster
出处
期刊:Annals of the American Thoracic Society [American Thoracic Society]
标识
DOI:10.1513/annalsats.202303-275oc
摘要

Many advocate the application of propensity matching methods to 'real world' data to answer key questions around Obstructive Sleep Apnea (OSA) management. One such question is whether identifying undiagnosed OSA impacts mortality in high-risk populations like Chronic Obstructive Pulmonary Disease (COPD).Assess the association of sleep testing with mortality among patients with COPD and high likelihood of undiagnosed OSA.We identified patients with COPD and high likelihood of undiagnosed OSA. We then distinguished those receiving sleep testing within 90 days of index COPD encounters. We calculated propensity scores for testing based on 37 variables and compared long-term mortality in matched groups. In sensitivity analyses, we compared mortality using inverse propensity weighting and instrumental variable (IV) methods. We also compared incidence of non-fatal events including adverse outcomes (hospitalizations and COPD exacerbations) and routine services that are regularly indicated in COPD (influenza vaccination and pulmonary function testing). We compared the incidence of each non-fatal event as a composite outcome with death and separately compared the marginal probability of each non-fatal event independently with death as a competing risk.Among 135,958 patients, 1,957 (1.4%) received sleep testing. We propensity matched all patients with sleep testing to an equal number without testing, achieving excellent balance on observed confounders with standardized differences <0.10. We observed lower mortality risk among patients with sleep testing (IRR 0.88, 95%CI, 0.79-0.99) and similar results using inverse propensity weighting and IV methods. Contrary to mortality, we found that sleep testing was associated with similar or greater risks for non-fatal adverse events including inpatient COPD exacerbations (SHR 1.29, 95%CI 1.02-1.62) and routine services like influenza vaccination (SHR 1.26, 95% CI 1.17-1.36).Our disparate findings can be interpreted in multiple ways. Sleep testing may indeed cause both reduced mortality and greater incidence of non-fatal adverse outcomes and routine services. However, it is also possible that our findings stem from residual confounding by patients' likelihood of accessing care. Given the limitations of propensity-based analyses, we cannot confidently distinguish these two possibilities. This uncertainty highlights the limitations of using propensity-based analyses to guide patient care and policy decisions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
西米露完成签到,获得积分10
1秒前
在水一方应助大方紫寒采纳,获得10
2秒前
2秒前
雪白凡双完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
优雅的听兰完成签到,获得积分10
4秒前
suniverse完成签到,获得积分10
5秒前
跳跃笑旋完成签到,获得积分10
5秒前
雪白凡双发布了新的文献求助10
6秒前
无辜绿竹发布了新的文献求助10
6秒前
小蘑菇应助lili采纳,获得10
7秒前
7秒前
8秒前
单纯的电灯胆完成签到,获得积分20
8秒前
8秒前
简单的大哥完成签到,获得积分10
11秒前
小老头发布了新的文献求助10
11秒前
11秒前
喜悦若颜发布了新的文献求助10
12秒前
12秒前
12秒前
13秒前
Shihan完成签到,获得积分10
13秒前
14秒前
DDd完成签到 ,获得积分10
14秒前
无辜绿竹完成签到,获得积分20
15秒前
15秒前
15秒前
17秒前
18秒前
89757发布了新的文献求助10
18秒前
19秒前
21秒前
共享精神应助edjtzlz采纳,获得10
21秒前
大方紫寒完成签到,获得积分10
21秒前
22秒前
niNe3YUE应助优雅的听兰采纳,获得10
22秒前
奥特曼发布了新的文献求助10
23秒前
lili发布了新的文献求助10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5713547
求助须知:如何正确求助?哪些是违规求助? 5216427
关于积分的说明 15271286
捐赠科研通 4865285
什么是DOI,文献DOI怎么找? 2611992
邀请新用户注册赠送积分活动 1562188
关于科研通互助平台的介绍 1519390