Unsupervised dual-domain disentangled network for removal of rigid motion artifacts in MRI

人工智能 计算机科学 工件(错误) 计算机视觉 模式识别(心理学) 运动(物理) 无监督学习 冗余(工程) 保险丝(电气) 深度学习 电气工程 工程类 操作系统
作者
Boya Wu,Caixia Li,Jiawei Zhang,Haoran Lai,Qianjin Feng,Meiyan Huang
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:165: 107373-107373 被引量:5
标识
DOI:10.1016/j.compbiomed.2023.107373
摘要

Motion artifacts in magnetic resonance imaging (MRI) have always been a serious issue because they can affect subsequent diagnosis and treatment. Supervised deep learning methods have been investigated for the removal of motion artifacts; however, they require paired data that are difficult to obtain in clinical settings. Although unsupervised methods are widely proposed to fully use clinical unpaired data, they generally focus on anatomical structures generated by the spatial domain while ignoring phase error (deviations or inaccuracies in phase information that are possibly caused by rigid motion artifacts during image acquisition) provided by the frequency domain. In this study, a 2D unsupervised deep learning method named unsupervised disentangled dual-domain network (UDDN) was proposed to effectively disentangle and remove unwanted rigid motion artifacts from images. In UDDN, a dual-domain encoding module was presented to capture different types of information from the spatial and frequency domains to enrich the information. Moreover, a cross-domain attention fusion module was proposed to effectively fuse information from different domains, reduce information redundancy, and improve the performance of motion artifact removal. UDDN was validated on a publicly available dataset and a clinical dataset. Qualitative and quantitative experimental results showed that our method could effectively remove motion artifacts and reconstruct image details. Moreover, the performance of UDDN surpasses that of several state-of-the-art unsupervised methods and is comparable with that of the supervised method. Therefore, our method has great potential for clinical application in MRI, such as real-time removal of rigid motion artifacts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
ldz完成签到,获得积分10
1秒前
仁爱柠檬完成签到,获得积分10
1秒前
L77完成签到,获得积分0
1秒前
2秒前
计算机小咖完成签到,获得积分10
4秒前
wintersss完成签到,获得积分10
4秒前
4秒前
传奇3应助bai123采纳,获得10
5秒前
潜山耕之完成签到,获得积分10
6秒前
ZhangSH完成签到,获得积分10
6秒前
6秒前
科研通AI5应助闪电采纳,获得10
6秒前
铎幸福完成签到,获得积分10
7秒前
7秒前
mmm完成签到,获得积分10
7秒前
7秒前
木小夕发布了新的文献求助10
7秒前
呼呼呼完成签到,获得积分10
7秒前
芽衣发布了新的文献求助10
8秒前
YUNWU发布了新的文献求助30
8秒前
8秒前
8秒前
8秒前
青子完成签到,获得积分10
8秒前
9秒前
隐形曼青应助露亮采纳,获得10
9秒前
9秒前
完美世界应助towerman采纳,获得10
9秒前
10秒前
机灵柚子应助xiaoxi采纳,获得20
10秒前
科研小白发布了新的文献求助10
11秒前
硬嗑苹果的花生完成签到,获得积分10
11秒前
小小完成签到 ,获得积分10
12秒前
cdercder应助喔喔佳佳采纳,获得10
12秒前
倪吉旭发布了新的文献求助10
13秒前
小朱发布了新的文献求助10
13秒前
YXC发布了新的文献求助10
13秒前
暴躁的雁易应助后知后觉采纳,获得30
13秒前
ludwig完成签到,获得积分10
13秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Izeltabart tapatansine - AdisInsight 800
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3774155
求助须知:如何正确求助?哪些是违规求助? 3319812
关于积分的说明 10197154
捐赠科研通 3034404
什么是DOI,文献DOI怎么找? 1665015
邀请新用户注册赠送积分活动 796485
科研通“疑难数据库(出版商)”最低求助积分说明 757510