脱甲基酶
去甲基化
组蛋白
组蛋白H3
化学
赖氨酸
基质(水族馆)
生物化学
体外
生物
基因
基因表达
氨基酸
DNA甲基化
生态学
作者
Matthew Hoekstra,Nashira H. Ridgeway,Kyle K. Biggar
摘要
The KDM5/JARID1 sub-family are 2-oxoglutarate and Fe(II)-dependent lysine-specific histone demethylases that are characterized by their Jumonji catalytic domains. The KDM5 family is known to remove tri-/di-methyl modifications from lysine-4 of histone H3 (i.e. H3-K4me2/3), a mark associated with active gene expression. As a result, studies to date have revolved around the influence of KDM5 on disease through their ability to regulate H3-K4me2/3. Recent evidence demonstrates that KDM5 may influence disease beyond H3-K4 demethylation, making it critical to further investigate KDM5-mediated demethylation of non-histone proteins. To help identify potential non-histone substrates for the KDM5 family, we developed a library of 180 permutated peptide substrates, with sequences that are systematically altered from the wild-type H3-K4me3 substrate. From this library, we characterized recombinant KDM5A/B/C/D substrate preference and developed recognition motifs for each KDM5 demethylase. The recognition motifs developed were used to predict potential substrates for KDM5A/B/C/D and profiled to generate a list of high-ranking and medium/low-ranking substrates for further in vitro validation. Through this approach, we identified 66 high-ranking substrates in which KDM5 demethylases displayed significant in vitro activity towards.
科研通智能强力驱动
Strongly Powered by AbleSci AI