Predicting Dementia Severity by Merging Anatomical and Diffusion MRI with Deep 3D Convolutional Neural Networks

磁共振弥散成像 部分各向异性 神经影像学 卷积神经网络 痴呆 人工智能 深度学习 失智症 体素 阿尔茨海默病神经影像学倡议 医学 计算机科学 神经科学 机器学习 心理学 磁共振成像 疾病 放射科 病理
作者
Tamoghna Chattopadhyay,Amit Singh,Neha Ann Joshy,Sophia I Thomopoulos,Talia M. Nir,Hong Zheng,Elnaz Nourollahimoghadam,Umang Gupta,Greg Ver Steeg,Neda Jahanshad,Paul M. Thompson
标识
DOI:10.1101/2022.08.22.504801
摘要

Abstract Machine learning methods have been used for over a decade for staging and subtyping a variety of brain diseases, offering fast and objective methods to classify neurodegenerative diseases such as Alzheimer’s disease (AD). Deep learning models based on convolutional neural networks (CNNs) have also been used to infer dementia severity and predict future clinical decline. Most CNN-based deep learning models use T1-weighted brain MRI scans to identify predictive features for these tasks. In contrast, we examine the added value of diffusion-weighted MRI (dMRI) - a variant of MRI, sensitive to microstructural tissue properties - as an additional input in CNN-based models of dementia severity. dMRI is sensitive to microstructural brain abnormalities not evident on standard anatomical MRI. By training CNNs on combined anatomical and diffusion MRI, we hypothesize that we could boost performance when predicting widely-used clinical assessments of dementia severity, such as individuals’ scores on the ADAS11, ADAS13, and MMSE (mini-mental state exam) clinical scales. For benchmarking, we evaluate CNNs that use T1-weighted MRI and dMRI to estimate “brain age” - the task of predicting a person’s chronological age from their neuroimaging data. To assess which dMRI-derived maps were most beneficial, we computed DWI-derived diffusion tensor imaging (DTI) maps of mean and radial diffusivity (MD/RD), axial diffusivity (AD) and fractional anisotropy (FA) for 1198 elderly subjects (age: 74.35 +/- 7.74 yrs.; 600 F/598 M, with a distribution of 636 CN/421 MCI/141 AD) from the Alzheimer’s Disease Neuroimaging Initiative (ADNI). We tested both 2D Slice CNN and 3D CNN neural network models for the above predictive tasks. Our results suggest that for at least some deep learning architectures, diffusion-weighted MRI may enhance performance for several AD-relevant deep learning tasks relative to using T1-weighted images alone.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
义气山水发布了新的文献求助30
2秒前
谷雨发布了新的文献求助100
3秒前
4秒前
nbing完成签到,获得积分10
4秒前
4秒前
334niubi666完成签到 ,获得积分10
4秒前
清风完成签到,获得积分10
4秒前
5秒前
liffchao发布了新的文献求助10
5秒前
自由青柏发布了新的文献求助10
5秒前
luyuhao3应助要减肥雪碧采纳,获得10
6秒前
6秒前
7秒前
梁林林完成签到,获得积分10
7秒前
小熊软糖发布了新的文献求助10
8秒前
风趣的烨磊完成签到,获得积分10
8秒前
Soph发布了新的文献求助10
8秒前
FartKing发布了新的文献求助10
9秒前
9秒前
小陈发布了新的文献求助10
9秒前
整齐代玉完成签到,获得积分10
10秒前
10秒前
丢丢发布了新的文献求助30
11秒前
情怀应助严剑封采纳,获得10
11秒前
完美世界应助童童采纳,获得10
12秒前
12秒前
TristeOwen发布了新的文献求助10
12秒前
睡不醒发布了新的文献求助10
12秒前
hif1a发布了新的文献求助10
13秒前
14秒前
义气山水完成签到,获得积分10
14秒前
36456657应助坤坤采纳,获得10
15秒前
林黛玉爱吃麻辣鸡完成签到,获得积分10
15秒前
脑洞疼应助严剑封采纳,获得10
16秒前
Soph完成签到,获得积分10
17秒前
小熊软糖完成签到,获得积分10
17秒前
17秒前
大个应助亚当寇克采纳,获得10
17秒前
阿斯顿风格完成签到,获得积分10
18秒前
谷雨完成签到,获得积分10
18秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
Medical technology industry in China 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312450
求助须知:如何正确求助?哪些是违规求助? 2945105
关于积分的说明 8522863
捐赠科研通 2620823
什么是DOI,文献DOI怎么找? 1433131
科研通“疑难数据库(出版商)”最低求助积分说明 664863
邀请新用户注册赠送积分活动 650231