磁共振弥散成像
部分各向异性
神经影像学
卷积神经网络
痴呆
人工智能
深度学习
失智症
体素
阿尔茨海默病神经影像学倡议
医学
计算机科学
神经科学
机器学习
心理学
磁共振成像
疾病
放射科
病理
作者
Tamoghna Chattopadhyay,Amit Singh,Neha Ann Joshy,Sophia I Thomopoulos,Talia M. Nir,Hong Zheng,Elnaz Nourollahimoghadam,Umang Gupta,Greg Ver Steeg,Neda Jahanshad,Paul M. Thompson
标识
DOI:10.1101/2022.08.22.504801
摘要
Abstract Machine learning methods have been used for over a decade for staging and subtyping a variety of brain diseases, offering fast and objective methods to classify neurodegenerative diseases such as Alzheimer’s disease (AD). Deep learning models based on convolutional neural networks (CNNs) have also been used to infer dementia severity and predict future clinical decline. Most CNN-based deep learning models use T1-weighted brain MRI scans to identify predictive features for these tasks. In contrast, we examine the added value of diffusion-weighted MRI (dMRI) - a variant of MRI, sensitive to microstructural tissue properties - as an additional input in CNN-based models of dementia severity. dMRI is sensitive to microstructural brain abnormalities not evident on standard anatomical MRI. By training CNNs on combined anatomical and diffusion MRI, we hypothesize that we could boost performance when predicting widely-used clinical assessments of dementia severity, such as individuals’ scores on the ADAS11, ADAS13, and MMSE (mini-mental state exam) clinical scales. For benchmarking, we evaluate CNNs that use T1-weighted MRI and dMRI to estimate “brain age” - the task of predicting a person’s chronological age from their neuroimaging data. To assess which dMRI-derived maps were most beneficial, we computed DWI-derived diffusion tensor imaging (DTI) maps of mean and radial diffusivity (MD/RD), axial diffusivity (AD) and fractional anisotropy (FA) for 1198 elderly subjects (age: 74.35 +/- 7.74 yrs.; 600 F/598 M, with a distribution of 636 CN/421 MCI/141 AD) from the Alzheimer’s Disease Neuroimaging Initiative (ADNI). We tested both 2D Slice CNN and 3D CNN neural network models for the above predictive tasks. Our results suggest that for at least some deep learning architectures, diffusion-weighted MRI may enhance performance for several AD-relevant deep learning tasks relative to using T1-weighted images alone.
科研通智能强力驱动
Strongly Powered by AbleSci AI