材料科学
高功率脉冲磁控溅射
X射线光电子能谱
偏压
分析化学(期刊)
微观结构
兴奋剂
复合材料
压痕硬度
弹性模量
纳米技术
溅射沉积
化学工程
薄膜
电压
溅射
化学
有机化学
光电子学
电气工程
工程类
作者
Jian-Fu Tang,Shang-Hao Wang,Fu-Chi Yang,Chi-Lung Chang
出处
期刊:Materials
[Multidisciplinary Digital Publishing Institute]
日期:2022-08-19
卷期号:15 (16): 5729-5729
被引量:1
摘要
This work compares the hardness and adhesion properties of AlCrN and AlCrCN hard coatings synthesized via HiPIMS using Al70Cr30 and Cr targets. The hardness and adhesion properties of AlCrCN films were optimized by performing deposition under various C2H2 flow rates (5, 8, 10, 13, 15, or 20 sccm) and DC bias voltages (−40, −60, −80, −100, or −120 V). EPMA results clearly indicated that the carbon content was increased from 1.9 to 12.2 at.% with increasing C2H2 flow rate from 5 to 20 sccm. XPS results confirmed a various content of chemical bonds (Cr-N, C-N, sp2, and sp3) with various C2H2 flow rate. Grain and columnar refinement in AlCrCN were derived from XRD, TEM, and SAED results. The higher hardness (28.6 GPa) and Young’s modulus (358 GPa) were obtained using an C2H2 flow rate of 5 sccm and a bias voltage of −60 V. Both of which subsequently decreased to 13.5 GPa and 212 GPa, respectively. This can be attributed to the C-N bond inhibiting the development of metal-N bonds. Increasing the bias voltage to −120 V increased the hardness to 32.9 GPa and the Young’s modulus to 372 GPa. Note that the application of bias voltage to enhance hardness should also be applicable to carbon-doped AlCrN films as well. All samples presented good adhesion characteristics (class 1; ISO26443:2008-06).
科研通智能强力驱动
Strongly Powered by AbleSci AI