已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Static hand gesture recognition in sign language based on convolutional neural network with feature extraction method using ORB descriptor and Gabor filter

计算机科学 人工智能 模式识别(心理学) Gabor滤波器 卷积神经网络 特征提取 手势 手语 手势识别 特征(语言学) 预处理器 计算机视觉 哲学 语言学
作者
Mahin Moghbeli Damaneh,Farahnaz Mohanna,Pouria Jafari
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:211: 118559-118559 被引量:38
标识
DOI:10.1016/j.eswa.2022.118559
摘要

In this paper, a new structure of deep learning neural network is introduced to identify the static hand gesture in the sign language. The proposed structure includes the convolutional neural network (CNN) and the classical non-intelligent feature extraction method. In the proposed structure, the hand gesture image, after preprocessing and removing its background, passes through three different streams of feature extraction, to well extract of effective features and determine the hand gesture class. These three streams, that independently extract their own specific features, consist of three widely used methods in the hand gesture classification named CNN, Gabor filter and ORB feature descriptor. Then these features are merged and formed the final feature vector. By combining these efficient methods, in addition to achieving a very high accuracy in hand gestures classifying, the proposed structure becomes more resistant to uncertainties such as rotation and ambiguity in the hand gestures. Another prominent feature of the proposed structure is its comprehensiveness on different image databases, compared to the similar methods. The transfer learning technique demonstrates that the proposed structure has the ability to be used as a pre-trained structure for any type of image database. Finally, the proposed structure is applied to the three different databases of Massey, ASL Alphabet and ASL, which have 2520, 87,000 and 23,400 of hand gesture images, respectively. The results show the mean accuracy of the proposed structure for the Massey test set of 758 images, ASL with 7020 test images, and ASL Alphabet with 26,100 test images, at 99.92%, 99.8%, and 99.80% respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
CodeCraft应助xuqianlan采纳,获得10
2秒前
3秒前
yyy发布了新的文献求助10
4秒前
无花果应助兴奋的天蓝采纳,获得30
4秒前
Pig-prodigy发布了新的文献求助10
6秒前
Zyl发布了新的文献求助10
6秒前
7秒前
嘟嘟完成签到 ,获得积分10
7秒前
青苹果完成签到,获得积分10
12秒前
LY学生完成签到,获得积分10
17秒前
17秒前
honey完成签到,获得积分10
22秒前
11发布了新的文献求助10
23秒前
共享精神应助Zyl采纳,获得10
23秒前
共享精神应助ant采纳,获得10
23秒前
英俊的铭应助休眠火山采纳,获得10
25秒前
29秒前
29秒前
31秒前
zzmAZUSA完成签到,获得积分20
33秒前
何事秋风发布了新的文献求助10
35秒前
泥巴发布了新的文献求助10
35秒前
Lucas应助yayayang采纳,获得10
36秒前
39秒前
39秒前
英姑应助小九采纳,获得100
40秒前
憨憨发布了新的文献求助10
42秒前
42秒前
酷炫的小白菜完成签到 ,获得积分10
43秒前
43秒前
43秒前
龙大发布了新的文献求助20
47秒前
yayayang发布了新的文献求助10
48秒前
49秒前
王m完成签到 ,获得积分10
51秒前
潇洒台灯发布了新的文献求助10
52秒前
53秒前
搜集达人应助憨憨采纳,获得10
53秒前
Juger完成签到 ,获得积分10
55秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3234297
求助须知:如何正确求助?哪些是违规求助? 2880629
关于积分的说明 8216470
捐赠科研通 2548256
什么是DOI,文献DOI怎么找? 1377635
科研通“疑难数据库(出版商)”最低求助积分说明 647925
邀请新用户注册赠送积分活动 623302