Static hand gesture recognition in sign language based on convolutional neural network with feature extraction method using ORB descriptor and Gabor filter

计算机科学 人工智能 模式识别(心理学) Gabor滤波器 卷积神经网络 特征提取 手势 手语 手势识别 特征(语言学) 预处理器 计算机视觉 哲学 语言学
作者
Mahin Moghbeli Damaneh,Farahnaz Mohanna,Pouria Jafari
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:211: 118559-118559 被引量:38
标识
DOI:10.1016/j.eswa.2022.118559
摘要

In this paper, a new structure of deep learning neural network is introduced to identify the static hand gesture in the sign language. The proposed structure includes the convolutional neural network (CNN) and the classical non-intelligent feature extraction method. In the proposed structure, the hand gesture image, after preprocessing and removing its background, passes through three different streams of feature extraction, to well extract of effective features and determine the hand gesture class. These three streams, that independently extract their own specific features, consist of three widely used methods in the hand gesture classification named CNN, Gabor filter and ORB feature descriptor. Then these features are merged and formed the final feature vector. By combining these efficient methods, in addition to achieving a very high accuracy in hand gestures classifying, the proposed structure becomes more resistant to uncertainties such as rotation and ambiguity in the hand gestures. Another prominent feature of the proposed structure is its comprehensiveness on different image databases, compared to the similar methods. The transfer learning technique demonstrates that the proposed structure has the ability to be used as a pre-trained structure for any type of image database. Finally, the proposed structure is applied to the three different databases of Massey, ASL Alphabet and ASL, which have 2520, 87,000 and 23,400 of hand gesture images, respectively. The results show the mean accuracy of the proposed structure for the Massey test set of 758 images, ASL with 7020 test images, and ASL Alphabet with 26,100 test images, at 99.92%, 99.8%, and 99.80% respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研小白完成签到 ,获得积分10
1秒前
小杜发布了新的文献求助10
1秒前
1秒前
LLL完成签到,获得积分10
1秒前
1秒前
wkjfh应助yyyyy采纳,获得10
3秒前
枝桠发布了新的文献求助10
3秒前
Akim应助李恒宇采纳,获得10
3秒前
4秒前
打打应助怅神霄而避光采纳,获得10
4秒前
诚心淇完成签到,获得积分10
5秒前
完美世界应助FCX采纳,获得10
6秒前
李哈哈发布了新的文献求助10
6秒前
8秒前
8秒前
9秒前
整齐的成败完成签到,获得积分10
9秒前
10秒前
10秒前
无奈的香芦完成签到,获得积分10
11秒前
有你发布了新的文献求助10
12秒前
lull发布了新的文献求助10
12秒前
13秒前
抹茶拿铁加奶砖完成签到 ,获得积分10
13秒前
14秒前
小离发布了新的文献求助30
14秒前
14秒前
chengqin发布了新的文献求助10
14秒前
15秒前
闪闪的沛槐完成签到,获得积分10
16秒前
星辰大海应助芒果不忙采纳,获得10
17秒前
大模型应助小离采纳,获得10
17秒前
YUkiii发布了新的文献求助10
17秒前
19秒前
过时的若山完成签到,获得积分10
19秒前
晶米发布了新的文献求助10
20秒前
ljh完成签到,获得积分10
22秒前
小mol仙发布了新的文献求助10
24秒前
wayne发布了新的文献求助10
25秒前
眼睛大初瑶完成签到 ,获得积分10
25秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Pharmacogenomics: Applications to Patient Care, Third Edition 1000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
《粉体与多孔固体材料的吸附原理、方法及应用》(需要中文翻译版,化学工业出版社,陈建,周力,王奋英等译) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3083756
求助须知:如何正确求助?哪些是违规求助? 2737102
关于积分的说明 7543295
捐赠科研通 2386458
什么是DOI,文献DOI怎么找? 1265484
科研通“疑难数据库(出版商)”最低求助积分说明 613100
版权声明 597951