A Spatiotemporal Constrained Machine Learning Method for OCO-2 Solar-Induced Chlorophyll Fluorescence (SIF) Reconstruction

遥感 计算机科学 算法 天文台 梯度升压 人工智能 数学 环境科学 气象学 物理 随机森林 地质学 天体物理学
作者
Michael K. Ng,Yuchen Wang,Xiaobin Guan,Wenli Huang,Jiajia Chen,Dekun Lin,Wenxia Gan
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-17 被引量:9
标识
DOI:10.1109/tgrs.2022.3204885
摘要

Solar-induced chlorophyll fluorescence (SIF) is an intuitive and accurate way to measure vegetation photosynthesis. Orbiting Carbon Observatory-2 (OCO-2)-retrieved SIF has shown great potential in estimating terrestrial gross primary production (GPP), but the discontinuous spatial coverage limits its application. Although some researchers have reconstructed OCO-2 SIF data, few have considered the uneven spatial and temporal distribution of the swath-distributed data, which can induce large uncertainties. In this article, we propose a spatiotemporal constrained light gradient boosting machine model (ST-LGBM) to reconstruct a contiguous OCO-2 SIF product (eight days, 0.05°), considering the data distribution characteristics. Two spatial and temporal constraining factors are introduced to utilize the relationships between the swath-distributed OCO-2 samples, combining the geographical regularity and vegetation phenological characteristics. The results indicate that the ST-LGBM method can improve the reconstruction accuracy in the missing data areas ( $R^{2}= 0.79$ ), with an increment of 0.05 in $R^{2}$ . The declined accuracy of the traditional light gradient boosting machine (LightGBM) method in the missing data areas is well alleviated in our results. The real-data comparison with TROPOspheric Monitoring Instrument (TROPOMI) SIF observations also shows that the results of the ST-LGBM method can achieve a much better consistency, in both spatial distribution and temporal variation. The sensitivity analysis also shows that the ST-LGBM can support stable results when using various input combinations or different machine learning models. This approach represents an innovative way to reconstruct a more accurate globally continuous OCO-2 SIF product and also provides references to reconstruct other data with a similar distribution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nsc发布了新的文献求助10
1秒前
搜集达人应助HJJHJH采纳,获得10
1秒前
2秒前
文右三发布了新的文献求助10
2秒前
4秒前
5秒前
高贵的傲云关注了科研通微信公众号
6秒前
KB完成签到,获得积分10
7秒前
所所应助nsc采纳,获得10
8秒前
SIDEsss发布了新的文献求助10
8秒前
8秒前
燕玲发布了新的文献求助10
10秒前
粽子完成签到,获得积分10
10秒前
林林发布了新的文献求助10
10秒前
11秒前
chen完成签到,获得积分10
12秒前
文右三完成签到,获得积分10
12秒前
12秒前
大鲟完成签到,获得积分10
13秒前
Wizard发布了新的文献求助30
13秒前
Owen发布了新的文献求助10
14秒前
16秒前
酷波er应助chohsueh采纳,获得10
16秒前
17秒前
soapffz完成签到,获得积分10
19秒前
SIDEsss完成签到,获得积分10
19秒前
新青年发布了新的文献求助10
19秒前
20秒前
杳鸢应助RNAPW采纳,获得10
22秒前
zjx发布了新的文献求助10
22秒前
杳鸢应助sshx采纳,获得10
22秒前
AXEDW完成签到,获得积分10
24秒前
leyellows发布了新的文献求助10
26秒前
渡劫发布了新的文献求助10
26秒前
燕玲完成签到,获得积分10
30秒前
30秒前
orixero应助猪猪hero采纳,获得10
32秒前
无花果应助leocai888采纳,获得10
32秒前
你好完成签到,获得积分10
32秒前
34秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
中介效应和调节效应模型进阶 400
Refractive Index Metrology of Optical Polymers 400
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3443819
求助须知:如何正确求助?哪些是违规求助? 3039911
关于积分的说明 8979088
捐赠科研通 2728479
什么是DOI,文献DOI怎么找? 1496582
科研通“疑难数据库(出版商)”最低求助积分说明 691696
邀请新用户注册赠送积分活动 689228