A Spatiotemporal Constrained Machine Learning Method for OCO-2 Solar-Induced Chlorophyll Fluorescence (SIF) Reconstruction

遥感 计算机科学 算法 天文台 梯度升压 人工智能 数学 环境科学 气象学 物理 随机森林 地质学 天体物理学
作者
Michael K. Ng,Yuchen Wang,Xiaobin Guan,Wenli Huang,Jiajia Chen,Dekun Lin,Wenxia Gan
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-17 被引量:9
标识
DOI:10.1109/tgrs.2022.3204885
摘要

Solar-induced chlorophyll fluorescence (SIF) is an intuitive and accurate way to measure vegetation photosynthesis. Orbiting Carbon Observatory-2 (OCO-2)-retrieved SIF has shown great potential in estimating terrestrial gross primary production (GPP), but the discontinuous spatial coverage limits its application. Although some researchers have reconstructed OCO-2 SIF data, few have considered the uneven spatial and temporal distribution of the swath-distributed data, which can induce large uncertainties. In this article, we propose a spatiotemporal constrained light gradient boosting machine model (ST-LGBM) to reconstruct a contiguous OCO-2 SIF product (eight days, 0.05°), considering the data distribution characteristics. Two spatial and temporal constraining factors are introduced to utilize the relationships between the swath-distributed OCO-2 samples, combining the geographical regularity and vegetation phenological characteristics. The results indicate that the ST-LGBM method can improve the reconstruction accuracy in the missing data areas ( $R^{2}= 0.79$ ), with an increment of 0.05 in $R^{2}$ . The declined accuracy of the traditional light gradient boosting machine (LightGBM) method in the missing data areas is well alleviated in our results. The real-data comparison with TROPOspheric Monitoring Instrument (TROPOMI) SIF observations also shows that the results of the ST-LGBM method can achieve a much better consistency, in both spatial distribution and temporal variation. The sensitivity analysis also shows that the ST-LGBM can support stable results when using various input combinations or different machine learning models. This approach represents an innovative way to reconstruct a more accurate globally continuous OCO-2 SIF product and also provides references to reconstruct other data with a similar distribution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YangSY完成签到,获得积分10
1秒前
guomingqian发布了新的文献求助10
1秒前
汉堡包应助wld采纳,获得10
1秒前
kk完成签到,获得积分20
2秒前
2秒前
2秒前
夜翼完成签到,获得积分10
2秒前
刘澄伊发布了新的文献求助10
3秒前
博修发布了新的文献求助10
3秒前
艾斯巍峨儿完成签到 ,获得积分10
3秒前
joker完成签到 ,获得积分10
3秒前
贲孱完成签到,获得积分10
3秒前
SYLH应助食化狂徒采纳,获得10
3秒前
慕青应助秦玉蓉采纳,获得10
3秒前
大方百招完成签到,获得积分10
4秒前
4秒前
郭囯完成签到,获得积分10
4秒前
学分完成签到 ,获得积分10
4秒前
Shadow完成签到 ,获得积分10
5秒前
Serendipity完成签到,获得积分20
5秒前
Orange应助tesla采纳,获得10
6秒前
小萝卜睿睿完成签到,获得积分20
6秒前
梅槑完成签到 ,获得积分10
6秒前
Apr9810h完成签到 ,获得积分10
7秒前
华北走地鸡完成签到,获得积分10
7秒前
淡定亦云完成签到 ,获得积分10
7秒前
7秒前
Jasper应助鱼摆摆摆摆采纳,获得10
8秒前
IvanLIu完成签到 ,获得积分10
8秒前
ZhaoCun完成签到,获得积分10
8秒前
风趣秋白完成签到,获得积分10
9秒前
Serendipity发布了新的文献求助10
9秒前
研友_ZeqAxZ完成签到,获得积分10
9秒前
petrichor应助pokemeow采纳,获得10
9秒前
10秒前
英勇的幻露完成签到,获得积分10
10秒前
刘澄伊完成签到,获得积分10
11秒前
神勇初瑶完成签到,获得积分10
11秒前
117318完成签到,获得积分10
11秒前
mnliao完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
白土三平研究 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3556011
求助须知:如何正确求助?哪些是违规求助? 3131566
关于积分的说明 9392042
捐赠科研通 2831431
什么是DOI,文献DOI怎么找? 1556440
邀请新用户注册赠送积分活动 726584
科研通“疑难数据库(出版商)”最低求助积分说明 715910