亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Spatiotemporal Constrained Machine Learning Method for OCO-2 Solar-Induced Chlorophyll Fluorescence (SIF) Reconstruction

遥感 计算机科学 算法 天文台 梯度升压 人工智能 数学 环境科学 气象学 物理 随机森林 地质学 天体物理学
作者
Huanfeng Shen,Yuchen Wang,Xiaobin Guan,Wenli Huang,Jiajia Chen,Dekun Lin,Wenxia Gan
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-17 被引量:12
标识
DOI:10.1109/tgrs.2022.3204885
摘要

Solar-induced chlorophyll fluorescence (SIF) is an intuitive and accurate way to measure vegetation photosynthesis. Orbiting Carbon Observatory-2 (OCO-2)-retrieved SIF has shown great potential in estimating terrestrial gross primary production (GPP), but the discontinuous spatial coverage limits its application. Although some researchers have reconstructed OCO-2 SIF data, few have considered the uneven spatial and temporal distribution of the swath-distributed data, which can induce large uncertainties. In this article, we propose a spatiotemporal constrained light gradient boosting machine model (ST-LGBM) to reconstruct a contiguous OCO-2 SIF product (eight days, 0.05°), considering the data distribution characteristics. Two spatial and temporal constraining factors are introduced to utilize the relationships between the swath-distributed OCO-2 samples, combining the geographical regularity and vegetation phenological characteristics. The results indicate that the ST-LGBM method can improve the reconstruction accuracy in the missing data areas ( $R^{2}= 0.79$ ), with an increment of 0.05 in $R^{2}$ . The declined accuracy of the traditional light gradient boosting machine (LightGBM) method in the missing data areas is well alleviated in our results. The real-data comparison with TROPOspheric Monitoring Instrument (TROPOMI) SIF observations also shows that the results of the ST-LGBM method can achieve a much better consistency, in both spatial distribution and temporal variation. The sensitivity analysis also shows that the ST-LGBM can support stable results when using various input combinations or different machine learning models. This approach represents an innovative way to reconstruct a more accurate globally continuous OCO-2 SIF product and also provides references to reconstruct other data with a similar distribution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
火山蜗牛完成签到,获得积分10
1秒前
情怀应助科研通管家采纳,获得10
19秒前
情怀应助科研通管家采纳,获得10
19秒前
马上顺利完成签到,获得积分10
26秒前
43秒前
结实青丝发布了新的文献求助10
48秒前
51秒前
xl_c完成签到 ,获得积分10
53秒前
Luke2完成签到 ,获得积分10
1分钟前
香蕉觅云应助柯慕玉泽采纳,获得10
1分钟前
1分钟前
脑洞疼应助只道寻常采纳,获得10
1分钟前
陶醉的烤鸡完成签到 ,获得积分10
1分钟前
1分钟前
木有完成签到 ,获得积分10
1分钟前
2分钟前
柯慕玉泽发布了新的文献求助10
2分钟前
h0jian09完成签到,获得积分10
2分钟前
2分钟前
2分钟前
NattyPoe发布了新的文献求助10
2分钟前
支雨泽完成签到,获得积分10
2分钟前
拼搏耷完成签到,获得积分10
3分钟前
3分钟前
平常星星完成签到 ,获得积分10
3分钟前
3分钟前
圆圆901234发布了新的文献求助30
4分钟前
ZanE完成签到,获得积分10
4分钟前
4分钟前
圆圆901234完成签到,获得积分10
4分钟前
共享精神应助聪明的背包采纳,获得10
4分钟前
4分钟前
4分钟前
cling发布了新的文献求助10
5分钟前
搜集达人应助丰富的唇彩采纳,获得10
5分钟前
赘婿应助风华正茂LC采纳,获得10
5分钟前
5分钟前
5分钟前
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Elastography for characterization of focal liver lesions: current evidence and future perspectives 200
Mastering Prompt Engineering: A Complete Guide 200
Elastography for characterization of focal liver lesions: current evidence and future perspectives 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5870802
求助须知:如何正确求助?哪些是违规求助? 6467774
关于积分的说明 15665043
捐赠科研通 4987027
什么是DOI,文献DOI怎么找? 2689141
邀请新用户注册赠送积分活动 1631477
关于科研通互助平台的介绍 1589522