Generative Adversarial Networks and Mixture Density Networks-Based Inverse Modeling for Microstructural Materials Design

生成语法 反向 财产(哲学) 反问题 计算机科学 对抗制 数据科学 理论计算机科学 数学优化 人工智能 数学 几何学 认识论 数学分析 哲学
作者
Yuwei Mao,Zijiang Yang,Dipendra Jha,Arindam Paul,Wei‐keng Liao,Alok Choudhary,Ankit Agrawal
出处
期刊:Integrating materials and manufacturing innovation [Springer Nature]
卷期号:11 (4): 637-647 被引量:9
标识
DOI:10.1007/s40192-022-00285-0
摘要

Abstract There are two broad modeling paradigms in scientific applications: forward and inverse. While forward modeling estimates the observations based on known causes, inverse modeling attempts to infer the causes given the observations. Inverse problems are usually more critical as well as difficult in scientific applications as they seek to explore the causes that cannot be directly observed. Inverse problems are used extensively in various scientific fields, such as geophysics, health care and materials science. Exploring the relationships from properties to microstructures is one of the inverse problems in material science. It is challenging to solve the microstructure discovery inverse problem, because it usually needs to learn a one-to-many nonlinear mapping. Given a target property, there are multiple different microstructures that exhibit the target property, and their discovery also requires significant computing time. Further, microstructure discovery becomes even more difficult because the dimension of properties (input) is much lower than that of microstructures (output). In this work, we propose a framework consisting of generative adversarial networks and mixture density networks for inverse modeling of structure–property linkages in materials, i.e., microstructure discovery for a given property. The results demonstrate that compared to baseline methods, the proposed framework can overcome the above-mentioned challenges and discover multiple promising solutions in an efficient manner.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
loveananya完成签到,获得积分10
刚刚
巅峰囚冰完成签到,获得积分10
1秒前
含蓄妖丽完成签到 ,获得积分10
4秒前
Luna给Luna的求助进行了留言
4秒前
suwu完成签到,获得积分10
4秒前
这瓜不卖完成签到,获得积分10
4秒前
5秒前
所所应助dzz采纳,获得10
5秒前
5秒前
张桓完成签到,获得积分10
6秒前
FF完成签到,获得积分10
6秒前
科研通AI2S应助bedrock采纳,获得10
7秒前
yoyo发布了新的文献求助10
8秒前
watermanlo完成签到,获得积分10
8秒前
8秒前
沐槿完成签到,获得积分10
9秒前
9秒前
烟花应助甜甜圈采纳,获得10
9秒前
watermanlo发布了新的文献求助10
12秒前
13秒前
酷酷亦凝完成签到,获得积分10
14秒前
科研狂魔完成签到,获得积分10
14秒前
Dsivan发布了新的文献求助10
15秒前
野性的花生完成签到,获得积分20
15秒前
15秒前
结实的蘑菇完成签到 ,获得积分10
15秒前
zyzzyz发布了新的文献求助30
16秒前
科研通AI2S应助烟雾采纳,获得10
16秒前
孙英苹完成签到,获得积分20
18秒前
18秒前
dzz发布了新的文献求助10
21秒前
小耗子完成签到,获得积分10
22秒前
彭于晏应助cxxx采纳,获得10
22秒前
B1n发布了新的文献求助10
22秒前
22秒前
Dsivan完成签到,获得积分10
22秒前
23秒前
24秒前
25秒前
情怀应助细心怜寒采纳,获得10
27秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140824
求助须知:如何正确求助?哪些是违规求助? 2791710
关于积分的说明 7800164
捐赠科研通 2448069
什么是DOI,文献DOI怎么找? 1302313
科研通“疑难数据库(出版商)”最低求助积分说明 626500
版权声明 601210