Dynamic container drayage with uncertain request arrival times and service time windows

容器(类型理论) 到达时间 服务(商务) 计算机科学 业务 运输工程 工程类 营销 机械工程
作者
Shuai Jia,Haipeng Cui,Rui Chen,Qiang Meng
出处
期刊:Transportation Research Part B-methodological [Elsevier]
卷期号:166: 237-258 被引量:9
标识
DOI:10.1016/j.trb.2022.10.010
摘要

Container drayage plays a critical role in intermodal global container transportation, as it accomplishes the first- and last-mile shipment of containers. A container drayage operator dispatches a set of tractors and a set of trailers to transport containers within a local area. An important aspect of the operations is that the arrival times of service requests are uncertain, which means that the operator should respond to the requests dynamically. Moreover, since customers usually impose time windows on container pickup and delivery, it would be important to exploit the service flexibilities of requests when allocating resources in order to enhance the resource efficiency. In this paper, we study a dynamic container drayage problem that arises from the practical operations of container drayage. We develop a Markov decision process (MDP) model for the problem to capture the dynamic interactions between the drayage operator and the uncertain environment. For solving the MDP model, we propose a novel integrated reinforcement learning and integer programming method, in which reinforcement learning enables real-time responses to requests by determining whether each request should be served immediately upon arrival or be held for a period of time, while integer programming plans resource allocation periodically for serving the accrued requests. The proposed method aims to identify a fleet management policy that exploits requests’ service flexibilities to maximize the operator’s service capacity and profitability. We also evaluate the performance of the proposed method on instances generated from the operational data of a container drayage operator in Singapore. • A dynamic container drayage problem is studied under uncertain request arrival times. • A new Markov decision model is developed to capture dynamic decisions. • A novel integrated reinforcement learning and integer programming method is proposed. • Our method enables both real-time decision making and periodic resource planning. • Performance of the proposed method is evaluated on real drayage operational data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
SS发布了新的文献求助10
1秒前
顺顺发布了新的文献求助10
2秒前
2秒前
2秒前
www发布了新的文献求助10
2秒前
3秒前
3秒前
李繁蕊发布了新的文献求助10
4秒前
暴躁的嘉懿完成签到,获得积分10
4秒前
LZH发布了新的文献求助20
4秒前
领导范儿应助rosexu采纳,获得10
5秒前
华生完成签到,获得积分10
6秒前
6秒前
Miracle关注了科研通微信公众号
6秒前
通~发布了新的文献求助10
7秒前
7秒前
Apple完成签到,获得积分10
7秒前
sunzhiyu233发布了新的文献求助10
8秒前
医学僧发布了新的文献求助30
8秒前
Sheila完成签到 ,获得积分10
8秒前
sweetbearm应助科研通管家采纳,获得10
8秒前
Hello应助科研通管家采纳,获得10
8秒前
NN应助科研通管家采纳,获得10
8秒前
9秒前
英姑应助科研通管家采纳,获得10
9秒前
36456657应助科研通管家采纳,获得10
9秒前
打打应助科研通管家采纳,获得10
9秒前
prosperp应助科研通管家采纳,获得20
9秒前
打打应助科研通管家采纳,获得10
9秒前
大个应助科研通管家采纳,获得10
9秒前
Akim应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
爆米花应助科研通管家采纳,获得10
10秒前
10秒前
赘婿应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
执着夏岚完成签到 ,获得积分10
10秒前
CipherSage应助苏州小北采纳,获得10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808