亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Dynamic container drayage with uncertain request arrival times and service time windows

容器(类型理论) 到达时间 服务(商务) 计算机科学 业务 运输工程 工程类 营销 机械工程
作者
Shuai Jia,Haipeng Cui,Rui Chen,Qiang Meng
出处
期刊:Transportation Research Part B-methodological [Elsevier]
卷期号:166: 237-258 被引量:9
标识
DOI:10.1016/j.trb.2022.10.010
摘要

Container drayage plays a critical role in intermodal global container transportation, as it accomplishes the first- and last-mile shipment of containers. A container drayage operator dispatches a set of tractors and a set of trailers to transport containers within a local area. An important aspect of the operations is that the arrival times of service requests are uncertain, which means that the operator should respond to the requests dynamically. Moreover, since customers usually impose time windows on container pickup and delivery, it would be important to exploit the service flexibilities of requests when allocating resources in order to enhance the resource efficiency. In this paper, we study a dynamic container drayage problem that arises from the practical operations of container drayage. We develop a Markov decision process (MDP) model for the problem to capture the dynamic interactions between the drayage operator and the uncertain environment. For solving the MDP model, we propose a novel integrated reinforcement learning and integer programming method, in which reinforcement learning enables real-time responses to requests by determining whether each request should be served immediately upon arrival or be held for a period of time, while integer programming plans resource allocation periodically for serving the accrued requests. The proposed method aims to identify a fleet management policy that exploits requests’ service flexibilities to maximize the operator’s service capacity and profitability. We also evaluate the performance of the proposed method on instances generated from the operational data of a container drayage operator in Singapore. • A dynamic container drayage problem is studied under uncertain request arrival times. • A new Markov decision model is developed to capture dynamic decisions. • A novel integrated reinforcement learning and integer programming method is proposed. • Our method enables both real-time decision making and periodic resource planning. • Performance of the proposed method is evaluated on real drayage operational data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吉祥高趙完成签到 ,获得积分10
2秒前
福建彭于晏完成签到,获得积分10
4秒前
4秒前
owl完成签到,获得积分10
4秒前
8秒前
江经纬发布了新的文献求助10
11秒前
称心乘风完成签到,获得积分20
11秒前
戴维发布了新的文献求助10
12秒前
雨相所至发布了新的文献求助20
13秒前
汉堡包应助长度2到采纳,获得10
13秒前
mimi完成签到,获得积分10
14秒前
18秒前
那行laxg发布了新的文献求助10
22秒前
开拖拉机的芍药完成签到 ,获得积分10
25秒前
27秒前
称心乘风发布了新的文献求助10
29秒前
29秒前
思源应助jinsijia采纳,获得10
30秒前
嘎哈发布了新的文献求助10
30秒前
曦越完成签到 ,获得积分10
32秒前
Neptune完成签到,获得积分10
34秒前
空白格完成签到 ,获得积分10
34秒前
酷波er应助嘎哈采纳,获得10
36秒前
38秒前
szcyxzh完成签到,获得积分10
40秒前
长度2到发布了新的文献求助10
45秒前
姜忆霜完成签到 ,获得积分10
45秒前
青糯完成签到 ,获得积分10
46秒前
盛夏如花发布了新的文献求助10
56秒前
mm完成签到,获得积分20
57秒前
jtksbf完成签到 ,获得积分10
1分钟前
wenhao完成签到 ,获得积分10
1分钟前
无产阶级科学者完成签到,获得积分10
1分钟前
1分钟前
wu发布了新的文献求助30
1分钟前
小白鸽完成签到,获得积分10
1分钟前
mm发布了新的文献求助10
1分钟前
fffffffff发布了新的文献求助10
1分钟前
领导范儿应助LOKL采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664014
求助须知:如何正确求助?哪些是违规求助? 4856551
关于积分的说明 15106965
捐赠科研通 4822463
什么是DOI,文献DOI怎么找? 2581455
邀请新用户注册赠送积分活动 1535665
关于科研通互助平台的介绍 1493892