Dynamic container drayage with uncertain request arrival times and service time windows

容器(类型理论) 到达时间 服务(商务) 计算机科学 业务 运输工程 工程类 营销 机械工程
作者
Shuai Jia,Haipeng Cui,Rui Chen,Qiang Meng
出处
期刊:Transportation Research Part B-methodological [Elsevier]
卷期号:166: 237-258 被引量:9
标识
DOI:10.1016/j.trb.2022.10.010
摘要

Container drayage plays a critical role in intermodal global container transportation, as it accomplishes the first- and last-mile shipment of containers. A container drayage operator dispatches a set of tractors and a set of trailers to transport containers within a local area. An important aspect of the operations is that the arrival times of service requests are uncertain, which means that the operator should respond to the requests dynamically. Moreover, since customers usually impose time windows on container pickup and delivery, it would be important to exploit the service flexibilities of requests when allocating resources in order to enhance the resource efficiency. In this paper, we study a dynamic container drayage problem that arises from the practical operations of container drayage. We develop a Markov decision process (MDP) model for the problem to capture the dynamic interactions between the drayage operator and the uncertain environment. For solving the MDP model, we propose a novel integrated reinforcement learning and integer programming method, in which reinforcement learning enables real-time responses to requests by determining whether each request should be served immediately upon arrival or be held for a period of time, while integer programming plans resource allocation periodically for serving the accrued requests. The proposed method aims to identify a fleet management policy that exploits requests’ service flexibilities to maximize the operator’s service capacity and profitability. We also evaluate the performance of the proposed method on instances generated from the operational data of a container drayage operator in Singapore. • A dynamic container drayage problem is studied under uncertain request arrival times. • A new Markov decision model is developed to capture dynamic decisions. • A novel integrated reinforcement learning and integer programming method is proposed. • Our method enables both real-time decision making and periodic resource planning. • Performance of the proposed method is evaluated on real drayage operational data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
打工仔完成签到 ,获得积分10
刚刚
1秒前
阿波完成签到,获得积分10
1秒前
热心灯泡完成签到,获得积分10
1秒前
ww发布了新的文献求助10
2秒前
goldNAN完成签到,获得积分10
2秒前
yh完成签到,获得积分10
2秒前
Z-先森完成签到,获得积分10
2秒前
俭朴的寇完成签到,获得积分10
3秒前
烂漫的如天完成签到 ,获得积分10
4秒前
可燃冰发布了新的文献求助10
5秒前
研友_Z3vemn发布了新的文献求助10
6秒前
Yoki发布了新的文献求助10
6秒前
复照完成签到,获得积分10
6秒前
wqq完成签到 ,获得积分10
8秒前
小牙医完成签到,获得积分10
8秒前
姜姜完成签到 ,获得积分10
8秒前
上官若男应助LLC采纳,获得10
8秒前
yu完成签到,获得积分10
9秒前
9秒前
WILD发布了新的文献求助10
9秒前
10秒前
我是老大应助聪慧雪糕采纳,获得10
10秒前
蟹堡王的秘方完成签到,获得积分10
10秒前
淡然的世倌完成签到,获得积分10
11秒前
12秒前
gonna完成签到,获得积分10
12秒前
李李李完成签到,获得积分10
13秒前
13秒前
醉熏的夏兰完成签到,获得积分10
13秒前
研友_Z3vemn完成签到,获得积分10
14秒前
知了完成签到,获得积分10
14秒前
耍酷的翠曼完成签到,获得积分10
15秒前
战神打败zjx完成签到,获得积分20
15秒前
三叶草完成签到,获得积分10
15秒前
Dfish发布了新的文献求助20
16秒前
idemipere完成签到,获得积分10
16秒前
超级要塞完成签到,获得积分10
16秒前
17秒前
高分求助中
Evolution 3rd edition 1500
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
the development of the right of privacy in new york 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3180102
求助须知:如何正确求助?哪些是违规求助? 2830482
关于积分的说明 7977443
捐赠科研通 2492067
什么是DOI,文献DOI怎么找? 1329172
科研通“疑难数据库(出版商)”最低求助积分说明 635704
版权声明 602954