已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Dynamic container drayage with uncertain request arrival times and service time windows

容器(类型理论) 到达时间 服务(商务) 计算机科学 业务 运输工程 工程类 营销 机械工程
作者
Shuai Jia,Haipeng Cui,Rui Chen,Qiang Meng
出处
期刊:Transportation Research Part B-methodological [Elsevier]
卷期号:166: 237-258 被引量:9
标识
DOI:10.1016/j.trb.2022.10.010
摘要

Container drayage plays a critical role in intermodal global container transportation, as it accomplishes the first- and last-mile shipment of containers. A container drayage operator dispatches a set of tractors and a set of trailers to transport containers within a local area. An important aspect of the operations is that the arrival times of service requests are uncertain, which means that the operator should respond to the requests dynamically. Moreover, since customers usually impose time windows on container pickup and delivery, it would be important to exploit the service flexibilities of requests when allocating resources in order to enhance the resource efficiency. In this paper, we study a dynamic container drayage problem that arises from the practical operations of container drayage. We develop a Markov decision process (MDP) model for the problem to capture the dynamic interactions between the drayage operator and the uncertain environment. For solving the MDP model, we propose a novel integrated reinforcement learning and integer programming method, in which reinforcement learning enables real-time responses to requests by determining whether each request should be served immediately upon arrival or be held for a period of time, while integer programming plans resource allocation periodically for serving the accrued requests. The proposed method aims to identify a fleet management policy that exploits requests’ service flexibilities to maximize the operator’s service capacity and profitability. We also evaluate the performance of the proposed method on instances generated from the operational data of a container drayage operator in Singapore. • A dynamic container drayage problem is studied under uncertain request arrival times. • A new Markov decision model is developed to capture dynamic decisions. • A novel integrated reinforcement learning and integer programming method is proposed. • Our method enables both real-time decision making and periodic resource planning. • Performance of the proposed method is evaluated on real drayage operational data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liusuyi发布了新的文献求助10
1秒前
乐乐应助Xhhaai采纳,获得10
1秒前
pphu发布了新的文献求助10
2秒前
2秒前
暴走乄完成签到,获得积分10
2秒前
3秒前
zjq完成签到,获得积分10
4秒前
暴走乄发布了新的文献求助20
8秒前
55完成签到,获得积分10
8秒前
HuLL完成签到 ,获得积分10
8秒前
xingsixs完成签到 ,获得积分10
13秒前
老实的衬衫完成签到 ,获得积分10
15秒前
隐形曼青应助彭乙洋采纳,获得10
20秒前
23秒前
天亦微晴完成签到,获得积分10
24秒前
26秒前
Ade完成签到,获得积分10
27秒前
Tsingyuan完成签到,获得积分10
27秒前
暴走乄发布了新的文献求助10
27秒前
kk完成签到 ,获得积分20
29秒前
32秒前
32秒前
35秒前
Xhhaai发布了新的文献求助10
35秒前
monned完成签到 ,获得积分10
36秒前
孤独蘑菇完成签到 ,获得积分10
38秒前
肥啾完成签到 ,获得积分10
38秒前
38秒前
welcome完成签到,获得积分10
40秒前
43秒前
完美的老头完成签到,获得积分10
43秒前
nobody完成签到,获得积分10
44秒前
44秒前
45秒前
ykg发布了新的文献求助10
45秒前
hooke发布了新的文献求助10
48秒前
49秒前
51秒前
庾稀发布了新的文献求助10
52秒前
52秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5509144
求助须知:如何正确求助?哪些是违规求助? 4604163
关于积分的说明 14489285
捐赠科研通 4538831
什么是DOI,文献DOI怎么找? 2487198
邀请新用户注册赠送积分活动 1469617
关于科研通互助平台的介绍 1441838