FedFA: Federated Learning with Feature Anchors to Align Features and Classifiers for Heterogeneous Data

分类器(UML) 计算机科学 歪斜 特征(语言学) 机器学习 人工智能 特征向量 数据挖掘 模式识别(心理学) 语言学 电信 哲学
作者
Tailin Zhou,Jun Zhang,Danny H. K. Tsang
出处
期刊:Cornell University - arXiv 被引量:5
标识
DOI:10.48550/arxiv.2211.09299
摘要

Federated learning allows multiple clients to collaboratively train a model without exchanging their data, thus preserving data privacy. Unfortunately, it suffers significant performance degradation due to heterogeneous data at clients. Common solutions involve designing an auxiliary loss to regularize weight divergence or feature inconsistency during local training. However, we discover that these approaches fall short of the expected performance because they ignore the existence of a vicious cycle between feature inconsistency and classifier divergence across clients. This vicious cycle causes client models to be updated in inconsistent feature spaces with more diverged classifiers. To break the vicious cycle, we propose a novel framework named Federated learning with Feature Anchors (FedFA). FedFA utilizes feature anchors to align features and calibrate classifiers across clients simultaneously. This enables client models to be updated in a shared feature space with consistent classifiers during local training. Theoretically, we analyze the non-convex convergence rate of FedFA. We also demonstrate that the integration of feature alignment and classifier calibration in FedFA brings a virtuous cycle between feature and classifier updates, which breaks the vicious cycle existing in current approaches. Extensive experiments show that FedFA significantly outperforms existing approaches on various classification datasets under label distribution skew and feature distribution skew.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助Kismet采纳,获得10
3秒前
3秒前
3秒前
JC完成签到,获得积分10
4秒前
ntfn完成签到,获得积分10
5秒前
agnes完成签到 ,获得积分10
5秒前
5秒前
传奇3应助哈哈采纳,获得10
5秒前
6秒前
6秒前
nini完成签到,获得积分10
8秒前
8秒前
Ricardo完成签到,获得积分10
8秒前
zhaojrr完成签到,获得积分10
10秒前
hhh发布了新的文献求助10
10秒前
10秒前
11秒前
时间不移民应助胖心怡采纳,获得10
11秒前
阿北完成签到 ,获得积分10
11秒前
牛牛牛发布了新的文献求助10
12秒前
13秒前
嘿嘿江完成签到 ,获得积分10
13秒前
xhl发布了新的文献求助10
14秒前
WW完成签到,获得积分10
15秒前
充电宝应助Nemo采纳,获得10
16秒前
寒冷鹏煊发布了新的文献求助10
16秒前
哈哈发布了新的文献求助10
18秒前
18秒前
19秒前
烟花应助secily采纳,获得30
19秒前
19秒前
nini发布了新的文献求助10
19秒前
雯小瑾完成签到 ,获得积分10
19秒前
科研通AI2S应助甜叶菊采纳,获得10
20秒前
huangyao完成签到 ,获得积分10
21秒前
答辩发布了新的文献求助10
21秒前
21秒前
21秒前
小胡发布了新的文献求助10
22秒前
海边听海完成签到 ,获得积分10
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
The Laschia-complex (Basidiomycetes) 600
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3540936
求助须知:如何正确求助?哪些是违规求助? 3118197
关于积分的说明 9334263
捐赠科研通 2816066
什么是DOI,文献DOI怎么找? 1548114
邀请新用户注册赠送积分活动 721291
科研通“疑难数据库(出版商)”最低求助积分说明 712643