扰动(地质)
生态网络
弹性(材料科学)
计算机科学
环境资源管理
生态学
特大城市
环境科学
生态系统
地理
古生物学
物理
生物
热力学
作者
Wuyang Hong,Renzhong Guo,Xiaoming Li,Chuangchang Liao
出处
期刊:Cities
[Elsevier]
日期:2022-10-28
卷期号:131: 104057-104057
被引量:29
标识
DOI:10.1016/j.cities.2022.104057
摘要
Human disturbance of urban ecosystems is intensifying, as is ecological fragmentation. As such, effective connections between green spaces must be established and restored to form structurally resilient urban ecological networks. In this study, we focused on indicators of city-scale ecological network resilience. We constructed a network model, analyzed the disturbance simulation results, and identified key nodes. Shenzhen, a megacity in China was selected for empirical research. First, we used Floyd algorithm to extract least-cost paths and then generate the corridor network, constructing an ecological network model with 386 nodes and 4910 edges. Second, focusing on the nodes of the constructed ecological network, we adopted a selected attack strategy to conduct dynamic simulations, using two parameters, network efficiency and maximum connectivity, to evaluate the resilience of the ecological network to changes under various disturbance scenarios. The results showed that the ecological network structure in the study area was relatively stable, and the first 30 % of nodes substantially impacted network resilience. The outcomes reflect the state of urban ecosystems that have been disturbed by socio-economic systems and are practically important for formulating adaptive spatial planning and management policies.
科研通智能强力驱动
Strongly Powered by AbleSci AI