Improving liver lesions classification on CT/MRI images based on Hounsfield Units attenuation and deep learning

霍恩斯菲尔德秤 人工智能 放射科 衰减 计算机断层摄影术 计算机科学 医学 核医学 物理 光学
作者
Anh-Cang Phan,Hung-Phi Cao,Thi-Nguu-Huynh Le,Thanh-Ngoan Trieu,Thuong‐Cang Phan
出处
期刊:Gene Expression Patterns [Elsevier]
卷期号:47: 119289-119289 被引量:3
标识
DOI:10.1016/j.gep.2022.119289
摘要

The early sign detection of liver lesions plays an extremely important role in preventing, diagnosing, and treating liver diseases. In fact, radiologists mainly consider Hounsfield Units to locate liver lesions. However, most studies focus on the analysis of unenhanced computed tomography images without considering an attenuation difference between Hounsfield Units before and after contrast injection. Therefore, the purpose of this work is to develop an improved method for the automatic detection and classification of common liver lesions based on deep learning techniques and the variations of the Hounsfield Units density on computed tomography scans. We design and implement a multi-phase classification model developed on the Faster Region-based Convolutional Neural Networks (Faster R-CNN), Region-based Fully Convolutional Networks (R-FCN), and Single Shot Detector Networks (SSD) with the transfer learning approach. The model considers the variations of the Hounsfield Unit density on computed tomography scans in four phases before and after contrast injection (plain, arterial, venous, and delay). The experiments are conducted on three common types of liver lesions including liver cysts, hemangiomas, and hepatocellular carcinoma. Experimental results show that the proposed method accurately locates and classifies common liver lesions. The liver lesions detection with Hounsfield Units gives high accuracy of 100%. Meanwhile, the lesion classification achieves an accuracy of 95.1%. The promising results show the applicability of the proposed method for automatic liver lesions detection and classification. The proposed method improves the accuracy of liver lesions detection and classification compared with some preceding methods. It is useful for practical systems to assist doctors in the diagnosis of liver lesions. In our further research, an improvement can be made with big data analysis to build real-time processing systems and we expand this study to detect lesions from all parts of the human body, not just the liver.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
CinnabarT完成签到,获得积分10
2秒前
揭谛发布了新的文献求助10
4秒前
Lucas应助凯文采纳,获得10
4秒前
陈陈陈完成签到,获得积分10
4秒前
5秒前
5秒前
传奇3应助可爱冲击采纳,获得10
6秒前
施以歌完成签到,获得积分10
7秒前
凌麟完成签到,获得积分10
8秒前
gbqcmcm完成签到,获得积分10
8秒前
嗨Honey完成签到,获得积分10
9秒前
dmj发布了新的文献求助10
9秒前
大模型应助Cy采纳,获得10
9秒前
施以歌发布了新的文献求助20
9秒前
ding应助松哥采纳,获得10
9秒前
Charon完成签到,获得积分10
10秒前
10秒前
上阳板栗发布了新的文献求助10
10秒前
12秒前
13秒前
小橙子发布了新的文献求助10
14秒前
15秒前
SSDmax完成签到,获得积分10
15秒前
dmj完成签到,获得积分20
18秒前
18秒前
sparks发布了新的文献求助10
19秒前
buno应助NM567采纳,获得10
19秒前
20秒前
20秒前
20秒前
xgn完成签到,获得积分10
21秒前
21秒前
24秒前
不安平凡完成签到,获得积分10
25秒前
简单从丹发布了新的文献求助10
26秒前
antman发布了新的文献求助10
26秒前
28秒前
28秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
The analysis and solution of partial differential equations 400
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3334478
求助须知:如何正确求助?哪些是违规求助? 2963675
关于积分的说明 8610936
捐赠科研通 2642632
什么是DOI,文献DOI怎么找? 1446858
科研通“疑难数据库(出版商)”最低求助积分说明 670421
邀请新用户注册赠送积分活动 658622