Improving liver lesions classification on CT/MRI images based on Hounsfield Units attenuation and deep learning

霍恩斯菲尔德秤 人工智能 放射科 衰减 计算机断层摄影术 计算机科学 医学 核医学 物理 光学
作者
Anh-Cang Phan,Hung-Phi Cao,Thi-Nguu-Huynh Le,Thanh-Ngoan Trieu,Thuong‐Cang Phan
出处
期刊:Gene Expression Patterns [Elsevier]
卷期号:47: 119289-119289 被引量:14
标识
DOI:10.1016/j.gep.2022.119289
摘要

The early sign detection of liver lesions plays an extremely important role in preventing, diagnosing, and treating liver diseases. In fact, radiologists mainly consider Hounsfield Units to locate liver lesions. However, most studies focus on the analysis of unenhanced computed tomography images without considering an attenuation difference between Hounsfield Units before and after contrast injection. Therefore, the purpose of this work is to develop an improved method for the automatic detection and classification of common liver lesions based on deep learning techniques and the variations of the Hounsfield Units density on computed tomography scans. We design and implement a multi-phase classification model developed on the Faster Region-based Convolutional Neural Networks (Faster R-CNN), Region-based Fully Convolutional Networks (R-FCN), and Single Shot Detector Networks (SSD) with the transfer learning approach. The model considers the variations of the Hounsfield Unit density on computed tomography scans in four phases before and after contrast injection (plain, arterial, venous, and delay). The experiments are conducted on three common types of liver lesions including liver cysts, hemangiomas, and hepatocellular carcinoma. Experimental results show that the proposed method accurately locates and classifies common liver lesions. The liver lesions detection with Hounsfield Units gives high accuracy of 100%. Meanwhile, the lesion classification achieves an accuracy of 95.1%. The promising results show the applicability of the proposed method for automatic liver lesions detection and classification. The proposed method improves the accuracy of liver lesions detection and classification compared with some preceding methods. It is useful for practical systems to assist doctors in the diagnosis of liver lesions. In our further research, an improvement can be made with big data analysis to build real-time processing systems and we expand this study to detect lesions from all parts of the human body, not just the liver.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一个果儿应助sunny采纳,获得30
1秒前
lblb发布了新的文献求助10
1秒前
陈尴尬发布了新的文献求助10
2秒前
美好斓发布了新的文献求助10
3秒前
FashionBoy应助敬业乐群采纳,获得10
7秒前
8秒前
9秒前
Georges-09发布了新的文献求助10
9秒前
10秒前
djbj2022发布了新的文献求助10
12秒前
slx发布了新的文献求助10
13秒前
13秒前
15秒前
15秒前
15秒前
忧伤的丹雪完成签到,获得积分20
16秒前
shenli发布了新的文献求助10
17秒前
17秒前
17秒前
Hello应助Edenmsecho22采纳,获得10
18秒前
ylz发布了新的文献求助10
18秒前
19秒前
李超强完成签到,获得积分10
20秒前
yang发布了新的文献求助10
20秒前
敬业乐群发布了新的文献求助10
20秒前
21秒前
21秒前
bkagyin应助lxj采纳,获得10
22秒前
22秒前
科研通AI6.2应助李暴龙采纳,获得10
23秒前
min完成签到,获得积分10
23秒前
FashionBoy应助wushan90采纳,获得10
24秒前
24秒前
愉快半兰发布了新的文献求助10
26秒前
椿椿完成签到,获得积分10
26秒前
26秒前
26秒前
27秒前
英姑应助义气的雨旋采纳,获得10
27秒前
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
The Dance of Butch/Femme: The Complementarity and Autonomy of Lesbian Gender Identity 500
Driving under the influence: Epidemiology, etiology, prevention, policy, and treatment 500
Differentiation Between Social Groups: Studies in the Social Psychology of Intergroup Relations 350
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5877742
求助须知:如何正确求助?哪些是违规求助? 6545170
关于积分的说明 15682078
捐赠科研通 4996405
什么是DOI,文献DOI怎么找? 2692689
邀请新用户注册赠送积分活动 1634723
关于科研通互助平台的介绍 1592383