已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Improving liver lesions classification on CT/MRI images based on Hounsfield Units attenuation and deep learning

霍恩斯菲尔德秤 人工智能 放射科 衰减 计算机断层摄影术 计算机科学 医学 核医学 物理 光学
作者
Anh-Cang Phan,Hung-Phi Cao,Thi-Nguu-Huynh Le,Thanh-Ngoan Trieu,Thuong‐Cang Phan
出处
期刊:Gene Expression Patterns [Elsevier BV]
卷期号:47: 119289-119289 被引量:9
标识
DOI:10.1016/j.gep.2022.119289
摘要

The early sign detection of liver lesions plays an extremely important role in preventing, diagnosing, and treating liver diseases. In fact, radiologists mainly consider Hounsfield Units to locate liver lesions. However, most studies focus on the analysis of unenhanced computed tomography images without considering an attenuation difference between Hounsfield Units before and after contrast injection. Therefore, the purpose of this work is to develop an improved method for the automatic detection and classification of common liver lesions based on deep learning techniques and the variations of the Hounsfield Units density on computed tomography scans. We design and implement a multi-phase classification model developed on the Faster Region-based Convolutional Neural Networks (Faster R-CNN), Region-based Fully Convolutional Networks (R-FCN), and Single Shot Detector Networks (SSD) with the transfer learning approach. The model considers the variations of the Hounsfield Unit density on computed tomography scans in four phases before and after contrast injection (plain, arterial, venous, and delay). The experiments are conducted on three common types of liver lesions including liver cysts, hemangiomas, and hepatocellular carcinoma. Experimental results show that the proposed method accurately locates and classifies common liver lesions. The liver lesions detection with Hounsfield Units gives high accuracy of 100%. Meanwhile, the lesion classification achieves an accuracy of 95.1%. The promising results show the applicability of the proposed method for automatic liver lesions detection and classification. The proposed method improves the accuracy of liver lesions detection and classification compared with some preceding methods. It is useful for practical systems to assist doctors in the diagnosis of liver lesions. In our further research, an improvement can be made with big data analysis to build real-time processing systems and we expand this study to detect lesions from all parts of the human body, not just the liver.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
ljy阿完成签到 ,获得积分10
2秒前
2秒前
5秒前
于东发布了新的文献求助10
6秒前
tttttewe完成签到,获得积分10
7秒前
香蕉觅云应助一袋薯片采纳,获得10
13秒前
13秒前
14秒前
16秒前
18秒前
Dasiliy发布了新的文献求助10
18秒前
务实的鸿煊完成签到,获得积分10
19秒前
23秒前
23秒前
NEUROVASCULAR完成签到,获得积分10
24秒前
Hello应助yyy采纳,获得10
24秒前
852应助微笑的千山采纳,获得10
25秒前
愉快西牛完成签到 ,获得积分10
31秒前
小方应助jiwoong采纳,获得10
32秒前
32秒前
34秒前
37秒前
于东完成签到,获得积分10
37秒前
量子星尘发布了新的文献求助10
37秒前
李健应助科研通管家采纳,获得10
38秒前
38秒前
汉堡包应助科研通管家采纳,获得10
38秒前
zhongu应助科研通管家采纳,获得10
38秒前
传奇3应助科研通管家采纳,获得10
38秒前
38秒前
深情安青应助科研通管家采纳,获得10
38秒前
Akim应助Ephemeral采纳,获得10
40秒前
40秒前
linmu完成签到 ,获得积分10
41秒前
45秒前
陈三三发布了新的文献求助10
45秒前
猪宝完成签到,获得积分20
46秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956848
求助须知:如何正确求助?哪些是违规求助? 3502916
关于积分的说明 11110677
捐赠科研通 3233882
什么是DOI,文献DOI怎么找? 1787655
邀请新用户注册赠送积分活动 870713
科研通“疑难数据库(出版商)”最低求助积分说明 802191