材料科学
固体氧化物燃料电池
离子电导率
电解质
介电谱
电导率
欧姆接触
氧化物
极化(电化学)
兴奋剂
化学工程
半导体
电化学
电极
分析化学(期刊)
光电子学
纳米技术
冶金
化学
物理化学
图层(电子)
色谱法
工程类
作者
Jinpeng Li,Muhammad Yousaf,Muhammad Akbar,Enyi Hu,Asma Noor,M.A.K. Yousaf Shah,Naveed Mushtaq,Yuzheng Lu,Majid Niaz Akhtar,Jun Xie
标识
DOI:10.1016/j.ceramint.2022.11.136
摘要
The high-performance single-phase semiconductor materials with higher ionic conductivity have drawn substantial attention in fuel cell applications. Semiconductor materials play a key role to enhance ionic conductivity subsequently promoting low temperature solid oxide fuel cell (LT-SOFC) research. Herein, we proposed a semiconductor Co doped Y2O3 (YCO) samples with different molar ratios, which may easily access the high ionic conductivity and electrochemical performances at low operating temperatures. The resulting fabricated fuel cell 10% Co doped Y2O3 (YCO-10) device exhibits high ionic conductivity of ∼0.16 S cm−1 and a feasible peak power density of 856 mW cm−2 along with 1.09 OCV at 530 °C under H2/air conditions. The electrochemical impedance spectroscopy (EIS) reveals that YCO-10 electrolyte based SOFC device delivers the least ohmic resistance of 0.11–0.16 Ω cm2 at 530-450 °C. Electrode polarization resistance of the constructed fuel cell device noticed from 0.59 Ω cm2 to 0.28 Ω cm2 in H2/air environment at different elevated temperatures (450 °C to 530 °C). This work suggests that YCO-10 can be a promising alternative electrolyte, owing to its high fuel cell performance and enhanced ionic conductivity for LT-SOFC.
科研通智能强力驱动
Strongly Powered by AbleSci AI