亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A slow feature based LSTM network for susceptibility assessment of acute mountain sickness with heterogeneous data

计算机科学 特征(语言学) 人工智能 异构网络 机器学习 数据挖掘 电信 哲学 语言学 无线网络 无线
作者
Sheng Wang,Rong Xiao,Jing Chen,Lingling Zhu,Dawei Shi,Yutan Wang
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:80: 104355-104355 被引量:1
标识
DOI:10.1016/j.bspc.2022.104355
摘要

Acute mountain sickness (AMS) is a syndrome that occurs when an individual rapidly rises to a high altitude and fails to adapt to acute hypobaric hypoxia physiologically. The aim of this paper is to develop an intelligent approach for the individual susceptibility assessment of AMS based on dynamic heterogeneous data monitored by multiple wearable devices. In this paper, the adaptive domain of hypoxia tolerance (ADHT) is established based on k -means clustering and mutual information (MI). Furthermore, a slow feature based long short-term memory (LSTM) learner is proposed to evaluate an individual’s ability to tolerate hypoxia, which is used as the susceptibility evaluation of AMS. The proposed method’s performance is evaluated by using the heterogeneous physiological data of 18 subjects, augmented to 396 samples. The maximum MI value (0.3946) between cluster results and the lake louise score is retained to establish ADHT. The classification accuracy of the slow feature based LSTM method reaches 85.71% and the area under the ROC curve reaches 0.925. Comparing with other benchmark and deep learning approaches, the proposed method perform best in term of accuracy, precision, specificity and Matthews correlation coefficient. The results show that the proposed method is feasible in classifying individual hypoxia tolerance and evaluating AMS susceptibility. The system takes full advantage of dynamic heterogeneous data during offline modeling, and only needs the IHT data fed back by wearable devices during online monitoring. The method improves the convenience of susceptibility assessment of AMS. • ADHT mitigates the negative effects of subjectivity in evaluating hypoxia tolerance. • A SF-based LSTM is proposed to learn the key information from the heterogeneous data. • The proposed method is verified by the real medical clinical data of 18 subjects. • The classification accuracy of hypoxia tolerance reaches 85.71% and the AUC is 0.925.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助Anan采纳,获得10
2秒前
xiaozhang发布了新的文献求助10
3秒前
木木完成签到,获得积分10
3秒前
六六安安完成签到,获得积分10
7秒前
7秒前
10秒前
10秒前
科研通AI6应助xiaozhang采纳,获得10
11秒前
火苗发布了新的文献求助10
11秒前
wxh发布了新的文献求助20
12秒前
Ocean完成签到,获得积分10
13秒前
5k全完成签到 ,获得积分10
14秒前
程艾影发布了新的文献求助10
15秒前
asdf完成签到 ,获得积分10
16秒前
AA发布了新的文献求助10
19秒前
安渝完成签到 ,获得积分10
20秒前
努力的淼淼完成签到 ,获得积分10
22秒前
番茄鱼完成签到 ,获得积分10
23秒前
ceeray23应助六六安安采纳,获得10
23秒前
tt完成签到 ,获得积分10
25秒前
Lee完成签到 ,获得积分10
28秒前
sn完成签到 ,获得积分10
32秒前
36秒前
等等完成签到,获得积分10
37秒前
韩佃晖发布了新的文献求助30
41秒前
43秒前
一只眠羊关注了科研通微信公众号
43秒前
Akim应助火苗采纳,获得10
44秒前
李佳发布了新的文献求助10
47秒前
tracer完成签到,获得积分10
52秒前
狂野老黑发布了新的文献求助10
53秒前
韩佃晖完成签到,获得积分20
53秒前
高高菠萝完成签到 ,获得积分10
57秒前
科研通AI6应助科研通管家采纳,获得10
58秒前
科研通AI6应助科研通管家采纳,获得10
58秒前
Kei应助科研通管家采纳,获得10
58秒前
深情安青应助科研通管家采纳,获得10
59秒前
Kei应助科研通管家采纳,获得10
59秒前
Kei应助科研通管家采纳,获得10
59秒前
英姑应助科研通管家采纳,获得50
59秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5401218
求助须知:如何正确求助?哪些是违规求助? 4520174
关于积分的说明 14079013
捐赠科研通 4433258
什么是DOI,文献DOI怎么找? 2434051
邀请新用户注册赠送积分活动 1426246
关于科研通互助平台的介绍 1404805