A slow feature based LSTM network for susceptibility assessment of acute mountain sickness with heterogeneous data

计算机科学 特征(语言学) 人工智能 异构网络 机器学习 数据挖掘 电信 哲学 语言学 无线网络 无线
作者
Sheng Wang,Rong Xiao,Jing Chen,Lingling Zhu,Dawei Shi,Yutan Wang
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:80: 104355-104355 被引量:1
标识
DOI:10.1016/j.bspc.2022.104355
摘要

Acute mountain sickness (AMS) is a syndrome that occurs when an individual rapidly rises to a high altitude and fails to adapt to acute hypobaric hypoxia physiologically. The aim of this paper is to develop an intelligent approach for the individual susceptibility assessment of AMS based on dynamic heterogeneous data monitored by multiple wearable devices. In this paper, the adaptive domain of hypoxia tolerance (ADHT) is established based on k -means clustering and mutual information (MI). Furthermore, a slow feature based long short-term memory (LSTM) learner is proposed to evaluate an individual’s ability to tolerate hypoxia, which is used as the susceptibility evaluation of AMS. The proposed method’s performance is evaluated by using the heterogeneous physiological data of 18 subjects, augmented to 396 samples. The maximum MI value (0.3946) between cluster results and the lake louise score is retained to establish ADHT. The classification accuracy of the slow feature based LSTM method reaches 85.71% and the area under the ROC curve reaches 0.925. Comparing with other benchmark and deep learning approaches, the proposed method perform best in term of accuracy, precision, specificity and Matthews correlation coefficient. The results show that the proposed method is feasible in classifying individual hypoxia tolerance and evaluating AMS susceptibility. The system takes full advantage of dynamic heterogeneous data during offline modeling, and only needs the IHT data fed back by wearable devices during online monitoring. The method improves the convenience of susceptibility assessment of AMS. • ADHT mitigates the negative effects of subjectivity in evaluating hypoxia tolerance. • A SF-based LSTM is proposed to learn the key information from the heterogeneous data. • The proposed method is verified by the real medical clinical data of 18 subjects. • The classification accuracy of hypoxia tolerance reaches 85.71% and the AUC is 0.925.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nhsyb嘉发布了新的文献求助10
1秒前
思源应助晶晶采纳,获得10
1秒前
心海完成签到,获得积分10
2秒前
YY发布了新的文献求助10
5秒前
脑洞疼应助落寞鱼采纳,获得10
7秒前
杨裕农发布了新的文献求助10
7秒前
8秒前
柏林寒冬应助yzm采纳,获得10
10秒前
只要平凡发布了新的文献求助10
11秒前
11秒前
领导范儿应助miao2采纳,获得10
11秒前
oydent完成签到,获得积分10
12秒前
14秒前
15秒前
晶晶完成签到,获得积分10
16秒前
16秒前
小玉发布了新的文献求助10
19秒前
20秒前
20秒前
敏子发布了新的文献求助10
22秒前
深情安青应助kfbcj采纳,获得10
23秒前
万能图书馆应助zhenxing采纳,获得10
23秒前
领导范儿应助有魅力天思采纳,获得10
23秒前
杨裕农完成签到,获得积分20
24秒前
miao2发布了新的文献求助10
25秒前
27秒前
28秒前
何三完成签到 ,获得积分10
29秒前
29秒前
深情冷雪发布了新的文献求助10
31秒前
YUYI发布了新的文献求助10
33秒前
sunshinegirl发布了新的文献求助10
34秒前
34秒前
40秒前
日富一日的fighter完成签到,获得积分10
43秒前
1218完成签到 ,获得积分10
44秒前
YUYI完成签到,获得积分10
44秒前
执着的无心完成签到,获得积分10
45秒前
杨行肖发布了新的文献求助10
46秒前
桐桐应助科研通管家采纳,获得10
49秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3994039
求助须知:如何正确求助?哪些是违规求助? 3534593
关于积分的说明 11266046
捐赠科研通 3274516
什么是DOI,文献DOI怎么找? 1806363
邀请新用户注册赠送积分活动 883238
科研通“疑难数据库(出版商)”最低求助积分说明 809719