A slow feature based LSTM network for susceptibility assessment of acute mountain sickness with heterogeneous data

计算机科学 特征(语言学) 人工智能 异构网络 机器学习 数据挖掘 电信 哲学 语言学 无线网络 无线
作者
Sheng Wang,Rong Xiao,Jing Chen,Lingling Zhu,Dawei Shi,Yutan Wang
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:80: 104355-104355 被引量:1
标识
DOI:10.1016/j.bspc.2022.104355
摘要

Acute mountain sickness (AMS) is a syndrome that occurs when an individual rapidly rises to a high altitude and fails to adapt to acute hypobaric hypoxia physiologically. The aim of this paper is to develop an intelligent approach for the individual susceptibility assessment of AMS based on dynamic heterogeneous data monitored by multiple wearable devices. In this paper, the adaptive domain of hypoxia tolerance (ADHT) is established based on k -means clustering and mutual information (MI). Furthermore, a slow feature based long short-term memory (LSTM) learner is proposed to evaluate an individual’s ability to tolerate hypoxia, which is used as the susceptibility evaluation of AMS. The proposed method’s performance is evaluated by using the heterogeneous physiological data of 18 subjects, augmented to 396 samples. The maximum MI value (0.3946) between cluster results and the lake louise score is retained to establish ADHT. The classification accuracy of the slow feature based LSTM method reaches 85.71% and the area under the ROC curve reaches 0.925. Comparing with other benchmark and deep learning approaches, the proposed method perform best in term of accuracy, precision, specificity and Matthews correlation coefficient. The results show that the proposed method is feasible in classifying individual hypoxia tolerance and evaluating AMS susceptibility. The system takes full advantage of dynamic heterogeneous data during offline modeling, and only needs the IHT data fed back by wearable devices during online monitoring. The method improves the convenience of susceptibility assessment of AMS. • ADHT mitigates the negative effects of subjectivity in evaluating hypoxia tolerance. • A SF-based LSTM is proposed to learn the key information from the heterogeneous data. • The proposed method is verified by the real medical clinical data of 18 subjects. • The classification accuracy of hypoxia tolerance reaches 85.71% and the AUC is 0.925.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
llllhh发布了新的文献求助20
刚刚
cctv18应助易达采纳,获得30
1秒前
丘比特应助Great小飞侠采纳,获得10
2秒前
2秒前
白小白关注了科研通微信公众号
2秒前
华仔应助遗忘的寂寞采纳,获得10
2秒前
zf完成签到,获得积分20
3秒前
4秒前
7秒前
7秒前
小园饼干完成签到,获得积分10
9秒前
向峻熙发布了新的文献求助10
9秒前
9秒前
Moomba完成签到 ,获得积分10
10秒前
可爱的函函应助小昏采纳,获得10
11秒前
小园饼干发布了新的文献求助10
11秒前
12秒前
13秒前
wzb发布了新的文献求助10
13秒前
崔文兴发布了新的文献求助20
14秒前
16秒前
CodeCraft应助钟志成采纳,获得10
16秒前
肉脸小鱼发布了新的文献求助10
19秒前
科研通AI2S应助1221采纳,获得20
20秒前
20秒前
独特的忆彤完成签到 ,获得积分10
20秒前
24秒前
丘比特应助马上毕业采纳,获得10
24秒前
玻璃杯发布了新的文献求助10
25秒前
25秒前
25秒前
充电宝应助踏雪飞鸿采纳,获得10
27秒前
林子发布了新的文献求助10
27秒前
打打应助FionaZhong采纳,获得10
29秒前
钟志成发布了新的文献求助10
30秒前
31秒前
wxl_1017应助玻璃杯采纳,获得10
32秒前
李爱国应助肉脸小鱼采纳,获得10
33秒前
xqyy完成签到 ,获得积分10
33秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Handbook of Prejudice, Stereotyping, and Discrimination (3rd Ed. 2024) 1200
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3244342
求助须知:如何正确求助?哪些是违规求助? 2888037
关于积分的说明 8251070
捐赠科研通 2556507
什么是DOI,文献DOI怎么找? 1384886
科研通“疑难数据库(出版商)”最低求助积分说明 649943
邀请新用户注册赠送积分活动 626045