亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

eXplainable AI Allows Predicting Upper Limb Rehabilitation Outcomes in Sub-Acute Stroke Patients

康复 冲程(发动机) 人工智能 物理医学与康复 相关性(法律) 计算机科学 机器学习 随机森林 物理疗法 医学 机械工程 法学 政治学 工程类
作者
Marialuisa Gandolfi,Ilaria Boscolo Galazzo,R. Pavan,Federica Cruciani,Nicola Valè,Alessandro Picelli,Silvia Francesca Storti,Nicola Smania,Gloria Menegaz
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (1): 263-273 被引量:24
标识
DOI:10.1109/jbhi.2022.3220179
摘要

While stroke is one of the leading causes of disability, the prediction of upper limb (UL) functional recovery following rehabilitation is still unsatisfactory, hampered by the clinical complexity of post-stroke impairment. Predictive models leading to accurate estimates while revealing which features contribute most to the predictions are the key to unveil the mechanisms subserving the post-intervention recovery, prompting a new focus on individualized treatments and precision medicine in stroke. Machine learning (ML) and explainable artificial intelligence (XAI) are emerging as the enabling technology in different fields, being promising tools also in clinics. In this study, we had the twofold goal of evaluating whether ML can allow deriving accurate predictions of UL recovery in sub-acute patients, and disentangling the contribution of the variables shaping the outcomes. To do so, Random Forest equipped with four XAI methods was applied to interpret the results and assess the feature relevance and their consensus. Our results revealed increased performance when using ML compared to conventional statistical approaches. Moreover, the features deemed as the most relevant were concordant across the XAI methods, suggesting good stability of the results. In particular, the baseline motor impairment as measured by simple clinical scales had the largest impact, as expected. Our findings highlight the core role of ML not only for accurately predicting the individual outcome scores after rehabilitation, but also for making ML results interpretable when associated to XAI methods. This provides clinicians with robust predictions and reliable explanations that are key factors in therapeutic planning/monitoring of stroke patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
古炮完成签到 ,获得积分10
59秒前
香蕉觅云应助Zephyr采纳,获得30
1分钟前
2分钟前
hhhhhhhhhh完成签到 ,获得积分10
3分钟前
小巧的柏柳完成签到 ,获得积分10
3分钟前
Setlla完成签到 ,获得积分10
3分钟前
Aries完成签到 ,获得积分10
3分钟前
研友_VZG7GZ应助lik采纳,获得10
4分钟前
Zephyr发布了新的文献求助30
4分钟前
4分钟前
4分钟前
小巫发布了新的文献求助10
4分钟前
4分钟前
zz发布了新的文献求助10
4分钟前
zz完成签到,获得积分10
4分钟前
重生之我怎么变院士了完成签到 ,获得积分10
4分钟前
4分钟前
fleeper发布了新的文献求助10
5分钟前
共享精神应助wenwen采纳,获得10
5分钟前
5分钟前
科目三应助Jason采纳,获得10
5分钟前
Zephyr完成签到,获得积分10
6分钟前
Zephyr发布了新的文献求助10
6分钟前
曲夜白完成签到 ,获得积分10
6分钟前
7分钟前
wenwen发布了新的文献求助10
7分钟前
程翠丝完成签到,获得积分10
7分钟前
7分钟前
小巫发布了新的文献求助10
7分钟前
科研通AI2S应助啊呜采纳,获得10
7分钟前
LYN-66完成签到 ,获得积分20
7分钟前
8分钟前
啊呜发布了新的文献求助10
8分钟前
Lucas应助Zephyr采纳,获得30
8分钟前
8分钟前
Benhnhk21完成签到,获得积分10
8分钟前
去去去去发布了新的文献求助10
9分钟前
9分钟前
Zephyr发布了新的文献求助30
9分钟前
情怀应助科研通管家采纳,获得10
9分钟前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139600
求助须知:如何正确求助?哪些是违规求助? 2790479
关于积分的说明 7795340
捐赠科研通 2446926
什么是DOI,文献DOI怎么找? 1301511
科研通“疑难数据库(出版商)”最低求助积分说明 626259
版权声明 601176