eXplainable AI Allows Predicting Upper Limb Rehabilitation Outcomes in Sub-Acute Stroke Patients

康复 冲程(发动机) 人工智能 物理医学与康复 相关性(法律) 计算机科学 机器学习 随机森林 物理疗法 医学 机械工程 法学 政治学 工程类
作者
Marialuisa Gandolfi,Ilaria Boscolo Galazzo,R. Pavan,Federica Cruciani,Nicola Valè,Alessandro Picelli,Silvia Francesca Storti,Nicola Smania,Gloria Menegaz
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (1): 263-273 被引量:24
标识
DOI:10.1109/jbhi.2022.3220179
摘要

While stroke is one of the leading causes of disability, the prediction of upper limb (UL) functional recovery following rehabilitation is still unsatisfactory, hampered by the clinical complexity of post-stroke impairment. Predictive models leading to accurate estimates while revealing which features contribute most to the predictions are the key to unveil the mechanisms subserving the post-intervention recovery, prompting a new focus on individualized treatments and precision medicine in stroke. Machine learning (ML) and explainable artificial intelligence (XAI) are emerging as the enabling technology in different fields, being promising tools also in clinics. In this study, we had the twofold goal of evaluating whether ML can allow deriving accurate predictions of UL recovery in sub-acute patients, and disentangling the contribution of the variables shaping the outcomes. To do so, Random Forest equipped with four XAI methods was applied to interpret the results and assess the feature relevance and their consensus. Our results revealed increased performance when using ML compared to conventional statistical approaches. Moreover, the features deemed as the most relevant were concordant across the XAI methods, suggesting good stability of the results. In particular, the baseline motor impairment as measured by simple clinical scales had the largest impact, as expected. Our findings highlight the core role of ML not only for accurately predicting the individual outcome scores after rehabilitation, but also for making ML results interpretable when associated to XAI methods. This provides clinicians with robust predictions and reliable explanations that are key factors in therapeutic planning/monitoring of stroke patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李志明完成签到,获得积分10
刚刚
1秒前
cyz012568完成签到,获得积分10
1秒前
1秒前
1秒前
TT完成签到,获得积分20
2秒前
小刘完成签到,获得积分10
2秒前
SciKid524完成签到 ,获得积分10
3秒前
有使不完牛劲的正主完成签到,获得积分10
4秒前
顾瞻完成签到,获得积分10
4秒前
滕友桃完成签到 ,获得积分10
4秒前
飘逸的青雪完成签到,获得积分10
4秒前
5秒前
小王完成签到,获得积分10
5秒前
Lucas应助王文帝采纳,获得10
5秒前
5秒前
轻歌水越发布了新的文献求助10
6秒前
TT发布了新的文献求助10
6秒前
科研通AI2S应助坚定迎天采纳,获得10
7秒前
海北完成签到 ,获得积分10
7秒前
1107任务报告完成签到,获得积分10
7秒前
大生蚝完成签到 ,获得积分10
8秒前
G18960发布了新的文献求助10
8秒前
爱因斯坦完成签到,获得积分10
8秒前
Bian完成签到,获得积分10
8秒前
8秒前
chaosyw完成签到,获得积分10
9秒前
七里海完成签到,获得积分10
9秒前
kit完成签到,获得积分10
10秒前
王盼盼完成签到,获得积分10
10秒前
10秒前
重要板凳完成签到 ,获得积分10
10秒前
ffff完成签到,获得积分10
11秒前
静心完成签到,获得积分10
12秒前
沉静的红酒完成签到,获得积分10
13秒前
XXXXH完成签到,获得积分10
13秒前
平头哥哥完成签到 ,获得积分10
13秒前
拉长的元芹完成签到,获得积分10
14秒前
米共完成签到 ,获得积分10
14秒前
14秒前
高分求助中
Sustainability in Tides Chemistry 2000
Microlepidoptera Palaearctica, Volumes 1 and 3 - 13 (12-Volume Set) [German] 1122
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
A Dissection Guide & Atlas to the Rabbit 600
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 500
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3104200
求助须知:如何正确求助?哪些是违规求助? 2755475
关于积分的说明 7633050
捐赠科研通 2408918
什么是DOI,文献DOI怎么找? 1278094
科研通“疑难数据库(出版商)”最低求助积分说明 617279
版权声明 599207