eXplainable AI Allows Predicting Upper Limb Rehabilitation Outcomes in Sub-Acute Stroke Patients

康复 冲程(发动机) 人工智能 物理医学与康复 相关性(法律) 计算机科学 机器学习 随机森林 物理疗法 医学 政治学 机械工程 工程类 法学
作者
Marialuisa Gandolfi,Ilaria Boscolo Galazzo,R. Pavan,Federica Cruciani,Nicola Valè,Alessandro Picelli,Silvia Francesca Storti,Nicola Smania,Gloria Menegaz
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (1): 263-273 被引量:24
标识
DOI:10.1109/jbhi.2022.3220179
摘要

While stroke is one of the leading causes of disability, the prediction of upper limb (UL) functional recovery following rehabilitation is still unsatisfactory, hampered by the clinical complexity of post-stroke impairment. Predictive models leading to accurate estimates while revealing which features contribute most to the predictions are the key to unveil the mechanisms subserving the post-intervention recovery, prompting a new focus on individualized treatments and precision medicine in stroke. Machine learning (ML) and explainable artificial intelligence (XAI) are emerging as the enabling technology in different fields, being promising tools also in clinics. In this study, we had the twofold goal of evaluating whether ML can allow deriving accurate predictions of UL recovery in sub-acute patients, and disentangling the contribution of the variables shaping the outcomes. To do so, Random Forest equipped with four XAI methods was applied to interpret the results and assess the feature relevance and their consensus. Our results revealed increased performance when using ML compared to conventional statistical approaches. Moreover, the features deemed as the most relevant were concordant across the XAI methods, suggesting good stability of the results. In particular, the baseline motor impairment as measured by simple clinical scales had the largest impact, as expected. Our findings highlight the core role of ML not only for accurately predicting the individual outcome scores after rehabilitation, but also for making ML results interpretable when associated to XAI methods. This provides clinicians with robust predictions and reliable explanations that are key factors in therapeutic planning/monitoring of stroke patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zency发布了新的文献求助10
刚刚
Zayro发布了新的文献求助10
1秒前
少雄发布了新的文献求助10
1秒前
英俊的铭应助卢佳伟采纳,获得30
1秒前
麦兜兜里没糖糖完成签到,获得积分10
1秒前
MORTY_C-137完成签到,获得积分10
1秒前
传奇3应助霜叶采纳,获得10
2秒前
解语花发布了新的文献求助10
2秒前
小李可可萘完成签到,获得积分10
2秒前
打打应助夏儿采纳,获得10
3秒前
3秒前
3秒前
汉堡包应助王世俊采纳,获得10
5秒前
6秒前
李健的小迷弟应助小麻风采纳,获得10
6秒前
wait发布了新的文献求助100
6秒前
宴之敖者完成签到,获得积分10
7秒前
我是老大应助maomao采纳,获得10
7秒前
呆萌的源智完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
777发布了新的文献求助10
9秒前
慕容松完成签到,获得积分10
9秒前
9秒前
研友_VZG7GZ应助中级奥术师采纳,获得10
10秒前
百里青寒完成签到,获得积分10
10秒前
jie酱拌面发布了新的文献求助10
10秒前
11秒前
11秒前
乔雨欣关注了科研通微信公众号
12秒前
隐形曼青应助ljq采纳,获得10
13秒前
酷波er应助wuming7890采纳,获得10
13秒前
量子星尘发布了新的文献求助150
13秒前
SciGPT应助xiaochaoge采纳,获得10
13秒前
13秒前
AAAB完成签到,获得积分10
14秒前
上官发布了新的文献求助10
14秒前
14秒前
卢佳伟发布了新的文献求助30
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5072784
求助须知:如何正确求助?哪些是违规求助? 4293079
关于积分的说明 13377079
捐赠科研通 4114308
什么是DOI,文献DOI怎么找? 2252951
邀请新用户注册赠送积分活动 1257680
关于科研通互助平台的介绍 1190588