eXplainable AI Allows Predicting Upper Limb Rehabilitation Outcomes in Sub-Acute Stroke Patients

康复 冲程(发动机) 人工智能 物理医学与康复 相关性(法律) 计算机科学 机器学习 随机森林 物理疗法 医学 机械工程 法学 政治学 工程类
作者
Marialuisa Gandolfi,Ilaria Boscolo Galazzo,R. Pavan,Federica Cruciani,Nicola Valè,Alessandro Picelli,Silvia Francesca Storti,Nicola Smania,Gloria Menegaz
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (1): 263-273 被引量:24
标识
DOI:10.1109/jbhi.2022.3220179
摘要

While stroke is one of the leading causes of disability, the prediction of upper limb (UL) functional recovery following rehabilitation is still unsatisfactory, hampered by the clinical complexity of post-stroke impairment. Predictive models leading to accurate estimates while revealing which features contribute most to the predictions are the key to unveil the mechanisms subserving the post-intervention recovery, prompting a new focus on individualized treatments and precision medicine in stroke. Machine learning (ML) and explainable artificial intelligence (XAI) are emerging as the enabling technology in different fields, being promising tools also in clinics. In this study, we had the twofold goal of evaluating whether ML can allow deriving accurate predictions of UL recovery in sub-acute patients, and disentangling the contribution of the variables shaping the outcomes. To do so, Random Forest equipped with four XAI methods was applied to interpret the results and assess the feature relevance and their consensus. Our results revealed increased performance when using ML compared to conventional statistical approaches. Moreover, the features deemed as the most relevant were concordant across the XAI methods, suggesting good stability of the results. In particular, the baseline motor impairment as measured by simple clinical scales had the largest impact, as expected. Our findings highlight the core role of ML not only for accurately predicting the individual outcome scores after rehabilitation, but also for making ML results interpretable when associated to XAI methods. This provides clinicians with robust predictions and reliable explanations that are key factors in therapeutic planning/monitoring of stroke patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
挖掘机完成签到,获得积分10
刚刚
易海之旅发布了新的文献求助10
刚刚
科研通AI2S应助夏铖铄采纳,获得10
1秒前
肉卷完成签到,获得积分10
3秒前
小确幸完成签到,获得积分10
3秒前
浩铭完成签到,获得积分10
3秒前
小吕小吕发布了新的文献求助20
5秒前
xiaobai发布了新的文献求助30
5秒前
隔壁的镇长完成签到 ,获得积分10
5秒前
研友_VZG7GZ应助优美电脑采纳,获得10
5秒前
5秒前
yxdjzwx发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
6秒前
7秒前
7秒前
7秒前
Pt完成签到,获得积分10
7秒前
WW完成签到,获得积分10
7秒前
orixero应助郭小胖14采纳,获得10
8秒前
9秒前
9秒前
强健的雪发布了新的文献求助10
10秒前
烟花应助科研通管家采纳,获得10
10秒前
无花果应助科研通管家采纳,获得10
10秒前
彭于彦祖应助科研通管家采纳,获得30
10秒前
怎么说应助科研通管家采纳,获得10
10秒前
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
Lucas应助科研通管家采纳,获得10
10秒前
CipherSage应助科研通管家采纳,获得20
10秒前
搜集达人应助科研通管家采纳,获得10
11秒前
Orange应助科研通管家采纳,获得10
11秒前
11秒前
Owen应助科研通管家采纳,获得30
11秒前
爆米花应助科研通管家采纳,获得30
11秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961728
求助须知:如何正确求助?哪些是违规求助? 3508080
关于积分的说明 11139419
捐赠科研通 3240738
什么是DOI,文献DOI怎么找? 1791017
邀请新用户注册赠送积分活动 872696
科研通“疑难数据库(出版商)”最低求助积分说明 803344