Machine learning algorithm and deep neural networks identified a novel subtype in hepatocellular carcinoma

比例危险模型 肝细胞癌 基因 Lasso(编程语言) 随机森林 人工神经网络 转录组 生存分析 机器学习 肿瘤科 人工智能 计算生物学 生物信息学 生物 内科学 医学 基因表达 计算机科学 遗传学 万维网
作者
Quan Zi,Hanwei Cui,Wei Liang,Qingjia Chi
出处
期刊:Cancer Biomarkers [IOS Press]
卷期号:35 (3): 305-320 被引量:2
标识
DOI:10.3233/cbm-220147
摘要

Hepatocellular carcinoma (HCC) is one of the most common malignant tumors. Due to the lack of specific characteristics in the early stage of the disease, patients are usually diagnosed in the advanced stage of disease progression.This study used machine learning algorithms to identify key genes in the progression of hepatocellular carcinoma and constructed a prediction model to predict the survival risk of HCC patients.The transcriptome data and clinical information were downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). The differential expression analysis and COX proportional-hazards model participated in the identification of survival-related genes. K-Means, Random forests, and LASSO regression are involved in identifying novel subtypes of HCC and screening key genes. The prediction model was constructed by deep neural networks (DNN), and Gene Set Enrichment Analysis (GSEA) reveals the metabolic pathways where key genes are located.Two subtypes were identified with significantly different survival rates (p< 0.0001, AUC = 0.720) and 17 key genes associated with the subtypes. The accuracy rate of the deep neural network prediction model is greater than 93.3%. The GSEA analysis found that the survival-related genes were significantly enriched in hallmark gene sets in the MSigDB database.In this study, we used machine learning algorithms to screen out 17 genes related to the survival risk of HCC patients, and trained a DNN model based on them to predict the survival risk of HCC patients. The genes that make up the model are all key genes that affect the formation and development of cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
77paocai完成签到,获得积分10
1秒前
CCL完成签到,获得积分10
2秒前
明亮的绫完成签到 ,获得积分10
2秒前
祖诗云完成签到,获得积分0
3秒前
jiewen发布了新的文献求助10
5秒前
5秒前
Oz完成签到,获得积分10
5秒前
zhukun发布了新的文献求助10
6秒前
6秒前
9秒前
香蕉觅云应助oliver501采纳,获得10
9秒前
正经俠完成签到 ,获得积分20
10秒前
YY完成签到 ,获得积分10
11秒前
清秀灵薇发布了新的文献求助10
11秒前
LZL完成签到 ,获得积分10
11秒前
油焖青椒完成签到,获得积分10
11秒前
不会学术的羊完成签到,获得积分10
12秒前
12秒前
lio完成签到,获得积分20
13秒前
13秒前
FashionBoy应助汤浩宏采纳,获得10
14秒前
wjwless完成签到,获得积分10
15秒前
稀罕你发布了新的文献求助10
15秒前
圣晟胜发布了新的文献求助10
15秒前
寒冷半雪完成签到,获得积分10
19秒前
善良易文发布了新的文献求助10
19秒前
orixero应助GXY采纳,获得30
19秒前
香蕉不言发布了新的文献求助10
19秒前
迅速海云发布了新的文献求助10
20秒前
xiamovivi完成签到,获得积分10
21秒前
bitahu完成签到,获得积分20
21秒前
路边一颗小草完成签到,获得积分10
21秒前
22秒前
22秒前
22秒前
乐乐应助勤劳落雁采纳,获得30
23秒前
天天快乐应助科研通管家采纳,获得10
23秒前
完美世界应助科研通管家采纳,获得10
23秒前
情怀应助科研通管家采纳,获得10
23秒前
Jasper应助科研通管家采纳,获得10
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849