Diagnosis of Laryngopharyngeal Reflux Disease Based on Gray and Texture Changes of Laryngoscopic Images

人工智能 灰度级 模式识别(心理学) 直方图 咽喉反流 朴素贝叶斯分类器 医学 计算机科学 数学 支持向量机 回流 图像(数学) 疾病 病理
作者
Di Wang,Yuanjia Ma,Shuang Li,Dan Yu,Chunjie Wang
出处
期刊:Journal of Voice [Elsevier BV]
被引量:1
标识
DOI:10.1016/j.jvoice.2023.06.015
摘要

Objective This study aimed to compare the changing trends of gray and texture values of laryngoscopic images in patients with laryngopharyngeal reflux (LPR) and non-LPR. Methods A total of 3428 laryngoscopic images were selected and divided into two groups, non-LPR and LPR groups based on the reflux symptom index. Gray histogram and gray-level co-occurrence matrix (GLCM) were used to quantify gray and texture features, and the model was trained based on these features. The total laryngoscopic images dataset was proportionally split into two parts including the training set and the test set according to the ratio of 7:3. Four different machine learning algorithms, including decision tree, naive Bayes, linear regression, and K-nearest neighbors, were applied to classify non-LPR or LPR laryngoscopic images. Results The results showed that different classification algorithms are used to classify laryngoscopic image dataset and promising classification accuracy are obtained. Specifically, the accuracy of K-nearest neighbors was 83.38% for the gray histogram-only classification, that of linear regression was 88.63% for the GLCM-only classification, and that of the decision tree was 98.01% for the combined gray histogram and GLCM analysis. Conclusion Gray histogram and GLCM analysis of the laryngoscopic images may be used as auxiliary tools to detect laryngopharyngeal mucosal damage in patients with LPR. Measurement of gray and texture feature values is an objective and convenient method, which may serve as a reference baseline for clinicians and have potential clinical usefulness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11发布了新的文献求助10
1秒前
yu完成签到,获得积分10
1秒前
芋圆完成签到,获得积分10
1秒前
lcy完成签到 ,获得积分10
2秒前
曾志伟发布了新的文献求助10
2秒前
聪明乐巧完成签到,获得积分10
2秒前
3秒前
SherminLi应助温婉的松鼠采纳,获得10
3秒前
黑色的白鲸完成签到,获得积分10
3秒前
jimmyzzz应助小于要毕业采纳,获得20
3秒前
Billie完成签到,获得积分10
4秒前
4秒前
天下第一混完成签到,获得积分10
6秒前
fan051500完成签到,获得积分10
6秒前
小鱼鱼Fish完成签到,获得积分10
6秒前
LEMONS完成签到,获得积分20
7秒前
pzh完成签到 ,获得积分10
7秒前
向雨竹完成签到,获得积分10
7秒前
隐形曼青应助ww采纳,获得10
7秒前
沛沛完成签到,获得积分10
7秒前
克林完成签到,获得积分10
7秒前
伍雄威发布了新的文献求助30
8秒前
monica完成签到,获得积分20
8秒前
seedcui发布了新的文献求助10
9秒前
黑章鱼保罗完成签到,获得积分10
9秒前
jun完成签到,获得积分10
9秒前
清秀寻菱完成签到,获得积分10
9秒前
王正浩完成签到 ,获得积分10
9秒前
潇湘学术完成签到,获得积分10
9秒前
Raynald发布了新的文献求助10
9秒前
小于要毕业完成签到,获得积分10
10秒前
舒服的映安完成签到 ,获得积分10
10秒前
11秒前
蒋小亮完成签到,获得积分20
11秒前
内向苡完成签到,获得积分10
12秒前
简单的白云完成签到,获得积分10
12秒前
CodeCraft应助之以采纳,获得10
12秒前
caidun完成签到,获得积分10
13秒前
研友_LNB7rL完成签到,获得积分10
13秒前
机灵柚子应助专注的绾绾采纳,获得20
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950088
求助须知:如何正确求助?哪些是违规求助? 3495487
关于积分的说明 11077296
捐赠科研通 3226021
什么是DOI,文献DOI怎么找? 1783386
邀请新用户注册赠送积分活动 867687
科研通“疑难数据库(出版商)”最低求助积分说明 800855