BeamQA: Multi-hop Knowledge Graph Question Answering with Sequence-to-Sequence Prediction and Beam Search

计算机科学 答疑 嵌入 图形 人工智能 理论计算机科学 图形数据库 知识图 语言模型 机器学习 自然语言处理
作者
Farah Atif,Ola El Khatib,Djellel Difallah
标识
DOI:10.1145/3539618.3591698
摘要

Knowledge Graph Question Answering (KGQA) is a task that aims to answer natural language queries by extracting facts from a knowledge graph. Current state-of-the-art techniques for KGQA rely on text-based information from graph entity and relations labels, as well as external textual corpora. By reasoning over multiple edges in the graph, these can accurately rank and return the most relevant entities. However, one of the limitations of these methods is that they cannot handle the inherent incompleteness of real-world knowledge graphs and may lead to inaccurate answers due to missing edges. To address this issue, recent advances in graph representation learning have led to the development of systems that can use link prediction techniques to handle missing edges probabilistically, allowing the system to reason with incomplete information. However, existing KGQA frameworks that use such techniques often depend on learning a transformation from the query representation to the graph embedding space, which requires access to a large training dataset. We present BeamQA, an approach that overcomes these limitations by combining a sequence-to-sequence prediction model with beam search execution in the embedding space. Our model uses a pre-trained large language model and synthetic question generation. Our experiments demonstrate the effectiveness of BeamQA when compared to other KGQA methods on two knowledge graph question-answering datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
传奇3应助CO2采纳,获得10
1秒前
2秒前
称心乐枫完成签到,获得积分10
3秒前
3秒前
22发布了新的文献求助10
3秒前
berry发布了新的文献求助10
3秒前
kingmin应助毛慢慢采纳,获得10
4秒前
完美世界应助顺利鱼采纳,获得10
5秒前
搜集达人应助招财不肥采纳,获得10
6秒前
sweetbearm应助李秋静采纳,获得10
6秒前
Michael_li完成签到,获得积分10
6秒前
whs完成签到,获得积分10
8秒前
科研通AI5应助xlj采纳,获得10
9秒前
再干一杯发布了新的文献求助10
9秒前
10秒前
满意的天完成签到 ,获得积分10
10秒前
luoshiwen完成签到,获得积分10
10秒前
落寞的觅柔完成签到,获得积分10
12秒前
13秒前
LUNWENREQUEST发布了新的文献求助10
13秒前
14秒前
15秒前
123cxj完成签到,获得积分10
18秒前
CO2发布了新的文献求助10
18秒前
summer发布了新的文献求助10
18秒前
19秒前
Xx.发布了新的文献求助10
19秒前
大大关注了科研通微信公众号
19秒前
稚祎完成签到 ,获得积分10
19秒前
19秒前
CodeCraft应助东东采纳,获得10
20秒前
21秒前
叽里咕噜完成签到 ,获得积分10
22秒前
田様应助zccc采纳,获得10
23秒前
隐形的雁完成签到,获得积分10
23秒前
追寻的秋玲完成签到,获得积分10
24秒前
李繁蕊发布了新的文献求助10
24秒前
25秒前
舒心的紫雪完成签到 ,获得积分10
26秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808