BeamQA: Multi-hop Knowledge Graph Question Answering with Sequence-to-Sequence Prediction and Beam Search

计算机科学 答疑 嵌入 图形 人工智能 理论计算机科学 图形数据库 知识图 语言模型 机器学习 自然语言处理
作者
Farah Atif,Ola El Khatib,Djellel Difallah
标识
DOI:10.1145/3539618.3591698
摘要

Knowledge Graph Question Answering (KGQA) is a task that aims to answer natural language queries by extracting facts from a knowledge graph. Current state-of-the-art techniques for KGQA rely on text-based information from graph entity and relations labels, as well as external textual corpora. By reasoning over multiple edges in the graph, these can accurately rank and return the most relevant entities. However, one of the limitations of these methods is that they cannot handle the inherent incompleteness of real-world knowledge graphs and may lead to inaccurate answers due to missing edges. To address this issue, recent advances in graph representation learning have led to the development of systems that can use link prediction techniques to handle missing edges probabilistically, allowing the system to reason with incomplete information. However, existing KGQA frameworks that use such techniques often depend on learning a transformation from the query representation to the graph embedding space, which requires access to a large training dataset. We present BeamQA, an approach that overcomes these limitations by combining a sequence-to-sequence prediction model with beam search execution in the embedding space. Our model uses a pre-trained large language model and synthetic question generation. Our experiments demonstrate the effectiveness of BeamQA when compared to other KGQA methods on two knowledge graph question-answering datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
成就宛完成签到 ,获得积分10
1秒前
2秒前
AGPPDY完成签到,获得积分10
3秒前
甄不错完成签到,获得积分20
3秒前
phw2333发布了新的文献求助30
4秒前
4秒前
Orange应助echo采纳,获得10
4秒前
5秒前
于陶晶完成签到,获得积分10
6秒前
XIXI发布了新的文献求助10
7秒前
Owen应助科研通管家采纳,获得10
8秒前
CipherSage应助科研通管家采纳,获得10
8秒前
脑洞疼应助科研通管家采纳,获得10
8秒前
8秒前
仅此而已应助科研通管家采纳,获得10
8秒前
隐形曼青应助科研通管家采纳,获得10
8秒前
wanci应助科研通管家采纳,获得10
8秒前
Lucas应助科研通管家采纳,获得10
8秒前
8秒前
思源应助科研通管家采纳,获得20
8秒前
脑洞疼应助科研通管家采纳,获得10
8秒前
赘婿应助科研通管家采纳,获得30
8秒前
研友_VZG7GZ应助科研通管家采纳,获得10
8秒前
桐桐应助科研通管家采纳,获得30
9秒前
今后应助科研通管家采纳,获得10
9秒前
乐乐应助科研通管家采纳,获得10
9秒前
coldfish应助科研通管家采纳,获得10
9秒前
隐形曼青应助科研通管家采纳,获得10
9秒前
李爱国应助科研通管家采纳,获得10
9秒前
9秒前
SCINEXUS应助科研通管家采纳,获得10
9秒前
9秒前
丘比特应助科研通管家采纳,获得10
9秒前
完美世界应助科研通管家采纳,获得10
9秒前
FashionBoy应助科研通管家采纳,获得30
9秒前
SCINEXUS应助科研通管家采纳,获得30
9秒前
9秒前
9秒前
9秒前
晴天完成签到 ,获得积分10
10秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165214
求助须知:如何正确求助?哪些是违规求助? 2816237
关于积分的说明 7911970
捐赠科研通 2475937
什么是DOI,文献DOI怎么找? 1318452
科研通“疑难数据库(出版商)”最低求助积分说明 632155
版权声明 602388