模型预测控制
电感
控制理论(社会学)
稳健性(进化)
二次规划
电压
计算机科学
方案(数学)
数学优化
工程类
控制(管理)
数学
人工智能
数学分析
生物化学
化学
电气工程
基因
标识
DOI:10.1109/precede57319.2023.10174463
摘要
The control performance of model predictive control (MPC) depends on the accuracy of the model. This paper proposes a robust continuous control set MPC (CCS-MPC) scheme for permanent magnet synchronous motors (PMSMs). This scheme adopts a two-step optimization scheme. The first step solves the unconstrained convex quadratic programming problem, and the second step uses the cost function to solve the voltage and current constraints to obtain the optimal output reference voltage, which reduces the computational burden. In addition, after using an incremental model to eliminate the impact of permanent magnet magnetic flux, an inductance recognition scheme is designed to extract accurate inductance values. Finally, experiments demonstrate the effectiveness of this method in improving robustness.
科研通智能强力驱动
Strongly Powered by AbleSci AI