Influence factor studies based on ensemble learning on the innovation performance of technology mergers and acquisitions

样品(材料) 预测能力 解释力 计算机科学 一般化 样本量测定 机器学习 人工智能 知识管理 统计 数学 色谱法 认识论 数学分析 哲学 化学
作者
Zhou Jian,Qi Luo
出处
期刊:Mathematics and Computers in Simulation [Elsevier BV]
标识
DOI:10.1016/j.matcom.2023.07.012
摘要

Technology merger and acquisition (M&A) is an important way for companies to enhance their innovation capabilities, and it is important to clarify the factors that affect the innovation performance of technology M&A. Existing studies only focus on the association between individual factors and technology M&A innovation performance, lack comparative analysis of different dimensions. Additionally, most studies discuss within-sample prediction results, whose findings may not apply to the full sample. Based on ensemble learning approaches in machine learning, we discuss the differences in the predictive power of multidimensional influence factors on the technology M&A innovation performance and then identify the main factors and the variables with the strongest predictive power. It is found that: (i) the M&A motivation of the acquirer is the most significant factor affecting the innovation performance of technology M&A; (ii) AdaBoost has the strongest explanatory power and the highest predictive accuracy among traditional machine learning approaches; (iii) among the multidimensional feature variables, the total asset turnover, overhead rate, executive compensation ratio, industry-wide misvaluation, average R&D investment ratio, average R&D staff number ratio, corporate risk-taking level, analyst attention, and media attention have the best predictive effect on technology M&A innovation performance. Ensemble learning approaches have a better out-of-sample generalization and can identify key influencing factors by comparing multiple dimensions in the performance of technology M&A innovation prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
wanci应助南宫子骞采纳,获得10
1秒前
1秒前
spark完成签到 ,获得积分10
2秒前
帅气西牛完成签到,获得积分10
3秒前
chl发布了新的文献求助10
3秒前
淀粉肠发布了新的文献求助10
3秒前
4秒前
4秒前
benbenx发布了新的文献求助10
6秒前
传奇3应助cc采纳,获得10
6秒前
llyyff发布了新的文献求助10
6秒前
tanmeng77完成签到,获得积分10
7秒前
7秒前
Ava应助White.K采纳,获得10
7秒前
8秒前
好嗨哟完成签到,获得积分10
8秒前
小鱼发布了新的文献求助30
9秒前
10秒前
10秒前
时与完成签到,获得积分10
10秒前
11秒前
受伤幻桃发布了新的文献求助10
11秒前
梁霄发布了新的文献求助10
11秒前
深情丸子完成签到,获得积分10
11秒前
12秒前
12秒前
to高坚果发布了新的文献求助10
13秒前
15秒前
李淼旭发布了新的文献求助10
17秒前
熊仔一百完成签到,获得积分10
18秒前
19秒前
19秒前
19秒前
从容的雨灵完成签到,获得积分10
20秒前
20秒前
22秒前
张雷应助进取拼搏采纳,获得10
22秒前
多喝热水关注了科研通微信公众号
24秒前
NexusExplorer应助wang采纳,获得10
24秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3971395
求助须知:如何正确求助?哪些是违规求助? 3516110
关于积分的说明 11180848
捐赠科研通 3251238
什么是DOI,文献DOI怎么找? 1795760
邀请新用户注册赠送积分活动 876012
科研通“疑难数据库(出版商)”最低求助积分说明 805228