An NIR-Driven Upconversion/C3N4/CoP Photocatalyst for Efficient Hydrogen Production by Inhibiting Electron–Hole Pair Recombination for Alzheimer’s Disease Therapy

光催化 制氢 材料科学 拉曼光谱 光化学 纳米技术 电子转移 化学 催化作用 有机化学 光学 物理
作者
Kezhen Ge,Zheng Li,Ali Wang,Zetai Bai,Xing Zhang,Xin Zheng,Zhao Liu,Fenglei Gao
出处
期刊:ACS Nano [American Chemical Society]
卷期号:17 (3): 2222-2234 被引量:27
标识
DOI:10.1021/acsnano.2c08499
摘要

Redox imbalance and abnormal amyloid protein (Aβ) buildup are key factors in the etiology of Alzheimer's disease (AD). As an antioxidant, the hydrogen molecule (H2) has the potential to cure AD by specifically scavenging highly harmful reactive oxygen species (ROS) such as •OH. However, due to the low solubility of H2 (1.6 ppm), the traditional H2 administration pathway cannot easily achieve long-term and effective accumulation of H2 in the foci. Therefore, how to achieve the continuous release of H2in situ is the key to improve the therapeutic effect on AD. As a corollary, we designed a rare earth ion doped g-C3N4 upconversion photocatalyst, which can respond to NIR and realize the continuous production of H2 by photocatalytic decomposition of H2O in biological tissue, which avoids the problem of the poor penetration of visible light. The introduction of CoP cocatalyst accelerates the separation and transfer of photogenerated electrons in g-C3N4, thus improving the photocatalytic activity of hydrogen evolution reaction. The morphology of the composite photocatalyst was shown by transmission electron microscopy, and the crystal structure was studied by X-ray diffractometry and Raman analysis. In addition, the ability of g-C3N4 to chelate metal ions and the photothermal properties of CoP can inhibit Aβ and reduce the deposition of Aβ in the brain. Efficient in situ hydrogen production therapy combined with multitarget synergism solves the problem of a poor therapeutic effect of a single target. In vivo studies have shown that UCNP@CoP@g-C3N4 can reduce Aβ deposition, improve memory impairment, and reduce neuroinflammation in AD mice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hayat应助是个小朋友啊采纳,获得800
刚刚
思辰。完成签到,获得积分10
1秒前
2秒前
briliian完成签到,获得积分10
2秒前
cy完成签到,获得积分10
3秒前
huan完成签到,获得积分10
4秒前
桃桃甜筒完成签到,获得积分10
5秒前
很傻的狗完成签到,获得积分10
6秒前
优雅的凝阳完成签到 ,获得积分10
7秒前
7秒前
8秒前
飞快的尔容完成签到,获得积分20
9秒前
树袋熊完成签到,获得积分10
10秒前
顾矜应助euphoria采纳,获得10
12秒前
12秒前
zhuxiaonian完成签到,获得积分10
12秒前
linxm7完成签到,获得积分10
13秒前
Crystal完成签到 ,获得积分10
13秒前
zz发布了新的文献求助30
14秒前
齐齐巴宾完成签到,获得积分0
16秒前
棉袄完成签到 ,获得积分10
16秒前
美好乐松应助vincent采纳,获得10
16秒前
小木子发布了新的文献求助10
16秒前
虚幻谷波完成签到,获得积分10
18秒前
boom完成签到 ,获得积分10
18秒前
你好麻烦哦完成签到,获得积分10
19秒前
打打应助任性雨柏采纳,获得10
20秒前
Evan完成签到 ,获得积分10
22秒前
戈壁滩的鱼完成签到,获得积分10
22秒前
山鸟与鱼不同路完成签到 ,获得积分10
22秒前
xiaozhou发布了新的文献求助10
23秒前
琉璃苣完成签到,获得积分10
24秒前
研友_LN25rL完成签到,获得积分10
25秒前
漂亮的一一完成签到 ,获得积分10
26秒前
淡dan完成签到,获得积分20
29秒前
甜蜜发带完成签到 ,获得积分10
29秒前
叶子完成签到,获得积分10
30秒前
Seth完成签到,获得积分10
32秒前
大个应助小木子采纳,获得10
33秒前
慈祥的晓蓝完成签到 ,获得积分10
36秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137115
求助须知:如何正确求助?哪些是违规求助? 2788086
关于积分的说明 7784551
捐赠科研通 2444121
什么是DOI,文献DOI怎么找? 1299763
科研通“疑难数据库(出版商)”最低求助积分说明 625574
版权声明 601011