Achieving ultrastability and efficient lithium storage capacity with high-energy iron(ii) oxalate anode materials by compositing Ge nano-conductive sites

电化学 阳极 材料科学 草酸盐 锂(药物) 化学工程 金属 电导率 化学 无机化学 冶金 工程类 电极 医学 内分泌学 物理化学
作者
Tingyu Song,Geng Gao,Dingfang Cui,Chong Wang,Hui Zhang,Feng Liang,Bin Yang,Keyu Zhang,Yaochun Yao
出处
期刊:Nanoscale [The Royal Society of Chemistry]
卷期号:15 (6): 2700-2713 被引量:7
标识
DOI:10.1039/d2nr06422g
摘要

Transition metal oxalates (TMOxs, represented by iron oxalate) have attracted considerable interest in anode materials due to their excellent lithium storage properties and consistent cyclic performance. Although investigations into their electrochemical capabilities and lithium storage mechanisms are gradually deepening, the complex and varied electrochemical reactions in the initial cycle, poor inherent conductivity, and high irreversible capacity constrain their further development. Herein, to solve the above-mentioned problems, we controlled the hydrothermal synthesis conditions of iron oxalate with the assistance of organic solvents, which induced the growth of iron oxalate crystals with nano Ge metal as the core. The metal Ge space sites compounded to the stacked iron oxalate particles act as conductive nodes and metal frames, which enhances both the strength of iron oxalate samples and electronic conductivity and lithium-ion diffusion inside the electrode materials. This special structure enhances the electrochemical activity of iron oxalates and improves their lithium storage capability. The iron oxalate @ nano Ge metal composite (FCO@Ge-1) exhibits an excellent cycling performance and an appreciable reversible specific capacity (1090 mA h g-1 after 200 cycles at 1 A g-1). The obvious polarization and variation of the electrochemical reaction in the initial cycle of iron oxalate are reduced by compositing nano Ge metal. It is demonstrated that nano Ge metal can promote reversible capacity retention from 67.72% to 80.69% in the early cycles. The distinctive structure of iron oxalate @ nano Ge metal composite provides a fresh pathway to enhance oxalate electrochemical reversible lithium storage activity and develop high-energy electrode material by constructing composite space conductive sites.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
甜甜的毛豆完成签到,获得积分10
1秒前
酷酷的紫南完成签到,获得积分10
1秒前
skek发布了新的文献求助10
1秒前
慕青应助马倩茹采纳,获得10
2秒前
chenhaiyi发布了新的文献求助30
3秒前
yy发布了新的文献求助10
4秒前
wangzhi完成签到,获得积分10
4秒前
樊念烟发布了新的文献求助10
5秒前
吹吹晚风完成签到,获得积分10
5秒前
perfect完成签到,获得积分10
6秒前
龙玄泽应助GgvnMuu采纳,获得10
6秒前
amelia完成签到,获得积分10
7秒前
俏皮芷蕊完成签到,获得积分10
7秒前
妩媚的寄容完成签到,获得积分10
7秒前
欢欢发布了新的文献求助10
7秒前
龙玄泽应助姜豆姜采纳,获得10
8秒前
8秒前
之组长了完成签到 ,获得积分10
8秒前
幽默帽子完成签到 ,获得积分10
9秒前
9秒前
小二郎应助Jack采纳,获得10
9秒前
雅澜完成签到,获得积分10
9秒前
快乐十八发布了新的文献求助10
9秒前
9秒前
9秒前
10秒前
t才发布了新的文献求助30
11秒前
12秒前
薇薇早睡早起完成签到 ,获得积分10
12秒前
烤麸发布了新的文献求助10
13秒前
孤独映容完成签到,获得积分10
14秒前
马倩茹发布了新的文献求助10
14秒前
14秒前
14秒前
xiaomu完成签到,获得积分20
16秒前
16秒前
Agernon应助研新采纳,获得10
17秒前
柚子发布了新的文献求助10
17秒前
17秒前
烤麸完成签到,获得积分10
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3552334
求助须知:如何正确求助?哪些是违规求助? 3128516
关于积分的说明 9378234
捐赠科研通 2827604
什么是DOI,文献DOI怎么找? 1554491
邀请新用户注册赠送积分活动 725515
科研通“疑难数据库(出版商)”最低求助积分说明 714943