亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Ultra-Lightweight Feature-Compressed Multi-Head Self-Attention Learning Networks for Hyperspectral Image Classification

高光谱成像 计算机科学 人工智能 特征(语言学) 模式识别(心理学) 特征提取 计算机视觉 上下文图像分类 主管(地质) 图像(数学) 遥感 地质学 哲学 语言学 地貌学
作者
Xinhao Li,Mingming Xu,Shanwei Liu,Hui Sheng,Jianhua Wan
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-14 被引量:3
标识
DOI:10.1109/tgrs.2024.3404929
摘要

Vision transformers are widely used in hyperspectral image classification, with their core feature extractor being self-attention. Self-attention has a wider receptive field than convolution. However, existing vision transformers for the classification of hyperspectral images (HSIs) with a large number of bands generally suffer from high computational complexity and a large number of parameter requirements. In this paper, we propose an Ultra-lightweight Feature-compressed Multi-head Self-attention Learning Network (UFMS-LN), which mainly consists of a novel Compressed Feature Multi-Head Self-Attention (CF-MHSA), a Spatial Feature Enhancement- Enhancing Transformation Reduction (SFE-ETR) and a Spatial-spectral Hybridization-Receptive Field Attention Convolutional operation (SH-RFAConv). By effectively compressing feature maps in spatial-spectral dimensions, CF-MHSA achieves the same feature extraction capabilities as state-of-the-art self-attention mechanisms, and its floating-point operations (FLOPs) and parameters are two orders of magnitude lower than state-of-the-art self-attention mechanisms. SH-RFAConv is designed to emphasize local features, which have the ability to extract both spatial-spectral features simultaneously and have a wider receptive field than traditional convolutional operations. Furthermore, SFE-ETR is a preprocessing module for UFMS-LN that combines global spatial feature enhancement methods with Enhancing Transformation Reduction (ETR). Extensive experiments conducted on four benchmark HSI datasets have shown that this method achieves superior results compared to existing state-of-the-art HSI classification networks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
seapowerseries完成签到,获得积分10
3秒前
可爱的坤完成签到,获得积分10
5秒前
可爱的坤发布了新的文献求助50
8秒前
李子谦完成签到 ,获得积分10
10秒前
11秒前
mengtong发布了新的文献求助30
11秒前
良良发布了新的文献求助10
16秒前
好运连连发布了新的文献求助10
17秒前
22秒前
ANKAR发布了新的文献求助10
28秒前
好运连连完成签到,获得积分10
30秒前
37秒前
量子星尘发布了新的文献求助10
37秒前
天天快乐应助ANKAR采纳,获得10
39秒前
ZYL完成签到,获得积分20
45秒前
走啊走应助老鼠耗子采纳,获得30
48秒前
骑猪看唱本完成签到,获得积分10
49秒前
59秒前
梨园春发布了新的文献求助200
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
Adc应助你嵙这个期刊没买采纳,获得10
1分钟前
1分钟前
mengtong发布了新的文献求助10
1分钟前
Yolo完成签到 ,获得积分10
1分钟前
1分钟前
兔子精发布了新的文献求助10
1分钟前
crx完成签到 ,获得积分20
1分钟前
科研通AI2S应助牛奶起司猫采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
小药丸完成签到 ,获得积分10
2分钟前
2分钟前
赘婿应助世界需要我采纳,获得10
2分钟前
2分钟前
圈哥完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5714386
求助须知:如何正确求助?哪些是违规求助? 5223310
关于积分的说明 15273201
捐赠科研通 4865802
什么是DOI,文献DOI怎么找? 2612406
邀请新用户注册赠送积分活动 1562493
关于科研通互助平台的介绍 1519755