CodonBERT: a BERT-based architecture tailored for codon optimization using the cross-attention mechanism

密码子使用偏好性 计算机科学 翻译(生物学) 计算生物学 起始密码子 翻译效率 信使核糖核酸 生物信息学 氨基酸 机器翻译 生物 人工智能 遗传学 基因组 基因
作者
Zilin Ren,Lili Jiang,Yaxin Di,Dingxi Zhang,Jianli Gong,Jianting Gong,Qiwei Jiang,Zhiguo Fu,Pingping Sun,Boxiong Yang,Ming Ni
出处
期刊:Bioinformatics [Oxford University Press]
卷期号:40 (7) 被引量:1
标识
DOI:10.1093/bioinformatics/btae330
摘要

Abstract Motivation Due to the varying delivery methods of mRNA vaccines, codon optimization plays a critical role in vaccine design to improve the stability and expression of proteins in specific tissues. Considering the many-to-one relationship between synonymous codons and amino acids, the number of mRNA sequences encoding the same amino acid sequence could be enormous. Finding stable and highly expressed mRNA sequences from the vast sequence space using in silico methods can generally be viewed as a path-search problem or a machine translation problem. However, current deep learning-based methods inspired by machine translation may have some limitations, such as recurrent neural networks, which have a weak ability to capture the long-term dependencies of codon preferences. Results We develop a BERT-based architecture that uses the cross-attention mechanism for codon optimization. In CodonBERT, the codon sequence is randomly masked with each codon serving as a key and a value. In the meantime, the amino acid sequence is used as the query. CodonBERT was trained on high-expression transcripts from Human Protein Atlas mixed with different proportions of high codon adaptation index codon sequences. The result showed that CodonBERT can effectively capture the long-term dependencies between codons and amino acids, suggesting that it can be used as a customized training framework for specific optimization targets. Availability and implementation CodonBERT is freely available on https://github.com/FPPGroup/CodonBERT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小羊发布了新的文献求助10
2秒前
3秒前
4秒前
8888拉完成签到,获得积分10
5秒前
piano呀发布了新的文献求助10
6秒前
6秒前
机灵夜云发布了新的文献求助10
6秒前
7秒前
我我我完成签到,获得积分10
7秒前
小白完成签到 ,获得积分10
8秒前
沐沐发布了新的文献求助10
8秒前
9秒前
weiwei04314发布了新的文献求助10
9秒前
9秒前
yydsyyd完成签到 ,获得积分10
10秒前
sarah发布了新的文献求助10
12秒前
12秒前
CCC完成签到,获得积分10
14秒前
wss123456发布了新的文献求助10
16秒前
无敌暴龙战士完成签到,获得积分20
17秒前
17秒前
19秒前
moruifei完成签到,获得积分10
22秒前
douzi完成签到,获得积分10
22秒前
琪琪的完成签到,获得积分10
23秒前
23秒前
23秒前
威威完成签到,获得积分10
23秒前
青衍应助科研通管家采纳,获得10
24秒前
英俊的铭应助科研通管家采纳,获得10
24秒前
情怀应助科研通管家采纳,获得30
24秒前
SciGPT应助科研通管家采纳,获得20
24秒前
24秒前
大个应助科研通管家采纳,获得10
24秒前
SciGPT应助科研通管家采纳,获得10
24秒前
上官若男应助科研通管家采纳,获得10
25秒前
大模型应助科研通管家采纳,获得10
25秒前
今后应助科研通管家采纳,获得10
25秒前
英俊的铭应助科研通管家采纳,获得10
25秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137211
求助须知:如何正确求助?哪些是违规求助? 2788244
关于积分的说明 7785274
捐赠科研通 2444247
什么是DOI,文献DOI怎么找? 1299869
科研通“疑难数据库(出版商)”最低求助积分说明 625606
版权声明 601023