Measurement Guidance in Diffusion Models: Insight from Medical Image Synthesis

计算机科学 人工智能 计算机视觉 医学影像学 图像处理 扩散 图像(数学) 模式识别(心理学) 热力学 物理
作者
Yimin Luo,Qinyu Yang,Yuheng Fan,Haikun Qi,Menghan Xia
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:46 (12): 7983-7997
标识
DOI:10.1109/tpami.2024.3399098
摘要

In the field of healthcare, the acquisition of sample is usually restricted by multiple considerations, including cost, labor- intensive annotation, privacy concerns, and radiation hazards, therefore, synthesizing images-of-interest is an important tool to data augmentation. Diffusion models have recently attained state-of-the-art results in various synthesis tasks, and embedding energy functions has been proved that can effectively guide the pre-trained model to synthesize target samples. However, we notice that current method development and validation are still limited to improving indicators, such as Fréchet Inception Distance score (FID) and Inception Score (IS), and have not provided deeper investigations on downstream tasks, like disease grading and diagnosis. Moreover, existing classifier guidance which can be regarded as a special case of energy function can only has a singular effect on altering the distribution of the synthetic dataset. This may contribute to in-distribution synthetic sample that has limited help to downstream model optimization. All these limitations remind that we still have a long way to go to achieve controllable generation. In this work, we first conducted an analysis on previous guidance as well as its contributions on further applications from the perspective of data distribution. To synthesize samples which can help downstream applications, we then introduce uncertainty guidance in each sampling step and design an uncertainty-guided diffusion models. Extensive experiments on four medical datasets, with ten classic networks trained on the augmented sample sets provided a comprehensive evaluation on the practical contributions of our methodology. Furthermore, we provide a theoretical guarantee for general gradient guidance in diffusion models, which would benefit future research on investigating other forms of measurement guidance for specific generative tasks. Codes and models are available at: https://github.com/yangqy1110/MGDM
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
优雅的琳完成签到,获得积分20
刚刚
迷路安阳完成签到,获得积分10
刚刚
Anonymous完成签到,获得积分10
1秒前
1秒前
小蘑菇应助自然采纳,获得10
2秒前
伞兵龙完成签到,获得积分10
2秒前
2秒前
西安小小朱完成签到,获得积分10
2秒前
2秒前
3秒前
小二郎应助打工人章鱼哥采纳,获得10
3秒前
优雅的琳发布了新的文献求助10
3秒前
Niar完成签到 ,获得积分10
3秒前
3秒前
4秒前
shuimo521发布了新的文献求助10
4秒前
脑洞疼应助眯眯眼的老鼠采纳,获得10
4秒前
所所应助小离采纳,获得10
4秒前
我是老大应助杨天水采纳,获得10
4秒前
woodheart完成签到,获得积分10
5秒前
5秒前
JamesPei应助miaoww采纳,获得10
5秒前
王王完成签到,获得积分10
5秒前
Evelyn完成签到,获得积分10
5秒前
cxt1346完成签到 ,获得积分10
5秒前
bkagyin应助孙一雯采纳,获得30
6秒前
顺心迎南完成签到,获得积分20
6秒前
Emma完成签到,获得积分10
6秒前
CodeCraft应助微笑鹤采纳,获得11
7秒前
7秒前
天青色等烟雨完成签到 ,获得积分10
7秒前
坚强亦丝应助hziyu采纳,获得10
7秒前
tanhaili完成签到 ,获得积分10
7秒前
乐小佳完成签到,获得积分10
7秒前
yyyrrr完成签到,获得积分10
8秒前
8秒前
8秒前
李健应助hu970采纳,获得10
8秒前
JamesPei应助守护星星采纳,获得10
9秒前
kingwill应助科研小民工采纳,获得20
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672