Measurement Guidance in Diffusion Models: Insight from Medical Image Synthesis

计算机科学 人工智能 计算机视觉 医学影像学 图像处理 扩散 图像(数学) 模式识别(心理学) 物理 热力学
作者
Yimin Luo,Qinyu Yang,Yuheng Fan,Haikun Qi,Menghan Xia
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:46 (12): 7983-7997 被引量:1
标识
DOI:10.1109/tpami.2024.3399098
摘要

In the field of healthcare, the acquisition of sample is usually restricted by multiple considerations, including cost, labor- intensive annotation, privacy concerns, and radiation hazards, therefore, synthesizing images-of-interest is an important tool to data augmentation. Diffusion models have recently attained state-of-the-art results in various synthesis tasks, and embedding energy functions has been proved that can effectively guide the pre-trained model to synthesize target samples. However, we notice that current method development and validation are still limited to improving indicators, such as Fréchet Inception Distance score (FID) and Inception Score (IS), and have not provided deeper investigations on downstream tasks, like disease grading and diagnosis. Moreover, existing classifier guidance which can be regarded as a special case of energy function can only has a singular effect on altering the distribution of the synthetic dataset. This may contribute to in-distribution synthetic sample that has limited help to downstream model optimization. All these limitations remind that we still have a long way to go to achieve controllable generation. In this work, we first conducted an analysis on previous guidance as well as its contributions on further applications from the perspective of data distribution. To synthesize samples which can help downstream applications, we then introduce uncertainty guidance in each sampling step and design an uncertainty-guided diffusion models. Extensive experiments on four medical datasets, with ten classic networks trained on the augmented sample sets provided a comprehensive evaluation on the practical contributions of our methodology. Furthermore, we provide a theoretical guarantee for general gradient guidance in diffusion models, which would benefit future research on investigating other forms of measurement guidance for specific generative tasks. Codes and models are available at: https://github.com/yangqy1110/MGDM
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
普鲁卡因发布了新的文献求助10
2秒前
积极的帽子完成签到 ,获得积分10
2秒前
量子星尘发布了新的文献求助10
4秒前
现代冷松完成签到,获得积分10
7秒前
Chimmy完成签到,获得积分10
12秒前
朴树朋友完成签到,获得积分20
12秒前
wlnhyF完成签到,获得积分10
14秒前
pursuit完成签到,获得积分10
17秒前
Neltharion完成签到,获得积分10
18秒前
沈海完成签到,获得积分10
20秒前
悦耳傥完成签到 ,获得积分10
20秒前
一叶知秋应助大橙子采纳,获得10
20秒前
科研小能手完成签到,获得积分10
21秒前
guoxingliu发布了新的文献求助200
22秒前
Double_N完成签到,获得积分10
25秒前
路路完成签到 ,获得积分10
26秒前
碧蓝的盼夏完成签到,获得积分10
30秒前
AU完成签到 ,获得积分10
31秒前
研友_yLpYkn完成签到,获得积分10
32秒前
兴奋的定帮完成签到 ,获得积分0
33秒前
一叶知秋应助大橙子采纳,获得10
34秒前
35秒前
金蛋蛋完成签到 ,获得积分10
35秒前
马琛尧完成签到 ,获得积分10
37秒前
一行白鹭上青天完成签到 ,获得积分10
41秒前
帅气的宽完成签到 ,获得积分10
42秒前
lixoii完成签到 ,获得积分10
44秒前
萌萌许完成签到,获得积分10
44秒前
sunce1990完成签到 ,获得积分10
47秒前
Bin_Liu完成签到,获得积分20
48秒前
宇老师完成签到,获得积分10
48秒前
研友_VZG7GZ应助马琛尧采纳,获得10
49秒前
安安的小板栗完成签到,获得积分10
52秒前
123_完成签到,获得积分10
54秒前
NexusExplorer应助大橙子采纳,获得10
55秒前
上善若水完成签到 ,获得积分10
57秒前
qiqi发布了新的文献求助10
1分钟前
1分钟前
英俊的铭应助cm采纳,获得10
1分钟前
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038157
求助须知:如何正确求助?哪些是违规求助? 3575869
关于积分的说明 11373842
捐赠科研通 3305650
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022