Measurement Guidance in Diffusion Models: Insight from Medical Image Synthesis

计算机科学 人工智能 计算机视觉 医学影像学 图像处理 扩散 图像(数学) 模式识别(心理学) 物理 热力学
作者
Yimin Luo,Qinyu Yang,Yuheng Fan,Haikun Qi,Xia Mao
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15
标识
DOI:10.1109/tpami.2024.3399098
摘要

In the field of healthcare, the acquisition of sample is usually restricted by multiple considerations, including cost, labor- intensive annotation, privacy concerns, and radiation hazards, therefore, synthesizing images-of-interest is an important tool to data augmentation. Diffusion models have recently attained state-of-the-art results in various synthesis tasks, and embedding energy functions has been proved that can effectively guide the pre-trained model to synthesize target samples. However, we notice that current method development and validation are still limited to improving indicators, such as Fréchet Inception Distance score (FID) and Inception Score (IS), and have not provided deeper investigations on downstream tasks, like disease grading and diagnosis. Moreover, existing classifier guidance which can be regarded as a special case of energy function can only has a singular effect on altering the distribution of the synthetic dataset. This may contribute to in-distribution synthetic sample that has limited help to downstream model optimization. All these limitations remind that we still have a long way to go to achieve controllable generation. In this work, we first conducted an analysis on previous guidance as well as its contributions on further applications from the perspective of data distribution. To synthesize samples which can help downstream applications, we then introduce uncertainty guidance in each sampling step and design an uncertainty-guided diffusion models. Extensive experiments on four medical datasets, with ten classic networks trained on the augmented sample sets provided a comprehensive evaluation on the practical contributions of our methodology. Furthermore, we provide a theoretical guarantee for general gradient guidance in diffusion models, which would benefit future research on investigating other forms of measurement guidance for specific generative tasks. Codes and models are available at: https://github.com/yangqy1110/MGDM
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
卡卡咧咧发布了新的文献求助10
1秒前
生5clean发布了新的文献求助10
2秒前
danhenrich发布了新的文献求助10
2秒前
121231233完成签到,获得积分10
2秒前
是小王ya完成签到,获得积分10
2秒前
开放尔丝发布了新的文献求助20
2秒前
3秒前
小李熊猫应助APS采纳,获得50
3秒前
4秒前
4秒前
请叫我表情帝完成签到 ,获得积分10
5秒前
5秒前
兰陵萧笑声完成签到,获得积分10
5秒前
8秒前
默默含卉发布了新的文献求助10
10秒前
danhenrich完成签到,获得积分10
10秒前
11秒前
小怪兽发布了新的文献求助10
11秒前
生5clean完成签到,获得积分10
12秒前
白张一个脑袋完成签到,获得积分10
14秒前
15秒前
Xbro完成签到,获得积分10
16秒前
科研通AI2S应助ykyk0927采纳,获得10
16秒前
16秒前
格子布发布了新的文献求助10
18秒前
小苹果完成签到,获得积分10
20秒前
华仔应助Pursue采纳,获得10
20秒前
Lsy完成签到,获得积分10
20秒前
Xbro发布了新的文献求助10
20秒前
杰帅发布了新的文献求助10
21秒前
莫妮卡.宾完成签到 ,获得积分10
23秒前
李健应助卫化蛹采纳,获得10
25秒前
25秒前
赘婿应助生5clean采纳,获得10
26秒前
STR发布了新的文献求助10
28秒前
28秒前
aaaa完成签到,获得积分10
29秒前
土豆仔完成签到,获得积分10
29秒前
Ava应助xpd采纳,获得30
32秒前
paul完成签到,获得积分10
32秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141332
求助须知:如何正确求助?哪些是违规求助? 2792381
关于积分的说明 7802238
捐赠科研通 2448574
什么是DOI,文献DOI怎么找? 1302618
科研通“疑难数据库(出版商)”最低求助积分说明 626650
版权声明 601237