Measurement Guidance in Diffusion Models: Insight from Medical Image Synthesis

计算机科学 人工智能 计算机视觉 医学影像学 图像处理 扩散 图像(数学) 模式识别(心理学) 物理 热力学
作者
Yimin Luo,Qinyu Yang,Yuheng Fan,Haikun Qi,Menghan Xia
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:46 (12): 7983-7997 被引量:6
标识
DOI:10.1109/tpami.2024.3399098
摘要

In the field of healthcare, the acquisition of sample is usually restricted by multiple considerations, including cost, labor- intensive annotation, privacy concerns, and radiation hazards, therefore, synthesizing images-of-interest is an important tool to data augmentation. Diffusion models have recently attained state-of-the-art results in various synthesis tasks, and embedding energy functions has been proved that can effectively guide the pre-trained model to synthesize target samples. However, we notice that current method development and validation are still limited to improving indicators, such as Fréchet Inception Distance score (FID) and Inception Score (IS), and have not provided deeper investigations on downstream tasks, like disease grading and diagnosis. Moreover, existing classifier guidance which can be regarded as a special case of energy function can only has a singular effect on altering the distribution of the synthetic dataset. This may contribute to in-distribution synthetic sample that has limited help to downstream model optimization. All these limitations remind that we still have a long way to go to achieve controllable generation. In this work, we first conducted an analysis on previous guidance as well as its contributions on further applications from the perspective of data distribution. To synthesize samples which can help downstream applications, we then introduce uncertainty guidance in each sampling step and design an uncertainty-guided diffusion models. Extensive experiments on four medical datasets, with ten classic networks trained on the augmented sample sets provided a comprehensive evaluation on the practical contributions of our methodology. Furthermore, we provide a theoretical guarantee for general gradient guidance in diffusion models, which would benefit future research on investigating other forms of measurement guidance for specific generative tasks. Codes and models are available at: https://github.com/yangqy1110/MGDM
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Study完成签到,获得积分20
2秒前
orixero应助苏菲的金发哈尔采纳,获得10
4秒前
lr完成签到 ,获得积分10
4秒前
李婉婷完成签到 ,获得积分10
4秒前
5秒前
小舀发布了新的文献求助10
5秒前
小二郎完成签到,获得积分10
7秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
幽默滑板完成签到 ,获得积分10
8秒前
充电宝应助平常毛衣采纳,获得10
9秒前
打打应助yq采纳,获得10
10秒前
正直听白发布了新的文献求助10
12秒前
Cathy完成签到,获得积分10
13秒前
小舀完成签到,获得积分10
14秒前
14秒前
15秒前
16秒前
16秒前
20秒前
work880728发布了新的文献求助10
20秒前
顾矜应助动人的娜天采纳,获得10
21秒前
james完成签到 ,获得积分10
21秒前
22秒前
22秒前
dm发布了新的文献求助10
22秒前
mijia发布了新的文献求助10
24秒前
biozy完成签到,获得积分10
25秒前
小王同学完成签到 ,获得积分10
25秒前
Song完成签到,获得积分10
26秒前
26秒前
yyyyyy完成签到,获得积分10
27秒前
科研菜鸟发布了新的文献求助30
27秒前
量子星尘发布了新的文献求助10
28秒前
28秒前
29秒前
科研小子完成签到,获得积分20
29秒前
Kelly完成签到,获得积分10
30秒前
asd发布了新的文献求助10
30秒前
青椒肉丝完成签到,获得积分10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4919940
求助须知:如何正确求助?哪些是违规求助? 4191727
关于积分的说明 13018954
捐赠科研通 3962254
什么是DOI,文献DOI怎么找? 2171992
邀请新用户注册赠送积分活动 1189905
关于科研通互助平台的介绍 1098617