亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Measurement Guidance in Diffusion Models: Insight from Medical Image Synthesis

计算机科学 人工智能 计算机视觉 医学影像学 图像处理 扩散 图像(数学) 模式识别(心理学) 热力学 物理
作者
Yimin Luo,Qinyu Yang,Yuheng Fan,Haikun Qi,Menghan Xia
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:46 (12): 7983-7997 被引量:11
标识
DOI:10.1109/tpami.2024.3399098
摘要

In the field of healthcare, the acquisition of sample is usually restricted by multiple considerations, including cost, labor- intensive annotation, privacy concerns, and radiation hazards, therefore, synthesizing images-of-interest is an important tool to data augmentation. Diffusion models have recently attained state-of-the-art results in various synthesis tasks, and embedding energy functions has been proved that can effectively guide the pre-trained model to synthesize target samples. However, we notice that current method development and validation are still limited to improving indicators, such as Fréchet Inception Distance score (FID) and Inception Score (IS), and have not provided deeper investigations on downstream tasks, like disease grading and diagnosis. Moreover, existing classifier guidance which can be regarded as a special case of energy function can only has a singular effect on altering the distribution of the synthetic dataset. This may contribute to in-distribution synthetic sample that has limited help to downstream model optimization. All these limitations remind that we still have a long way to go to achieve controllable generation. In this work, we first conducted an analysis on previous guidance as well as its contributions on further applications from the perspective of data distribution. To synthesize samples which can help downstream applications, we then introduce uncertainty guidance in each sampling step and design an uncertainty-guided diffusion models. Extensive experiments on four medical datasets, with ten classic networks trained on the augmented sample sets provided a comprehensive evaluation on the practical contributions of our methodology. Furthermore, we provide a theoretical guarantee for general gradient guidance in diffusion models, which would benefit future research on investigating other forms of measurement guidance for specific generative tasks. Codes and models are available at: https://github.com/yangqy1110/MGDM
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ceeray23发布了新的文献求助20
2秒前
4秒前
小湛湛完成签到 ,获得积分10
10秒前
难过的踏歌完成签到,获得积分10
10秒前
13秒前
16秒前
小湛完成签到 ,获得积分10
19秒前
ceeray23发布了新的文献求助20
22秒前
26秒前
ceeray23发布了新的文献求助20
30秒前
地蛋完成签到,获得积分10
36秒前
40秒前
43秒前
ho应助科研通管家采纳,获得10
46秒前
可爱的函函应助沐兮采纳,获得10
46秒前
斯文败类应助ZhuJing采纳,获得10
55秒前
手术刀完成签到 ,获得积分10
55秒前
卤蛋长不高完成签到 ,获得积分10
56秒前
56秒前
沐兮发布了新的文献求助10
1分钟前
1分钟前
ZhuJing发布了新的文献求助10
1分钟前
1分钟前
kentonchow应助ZhuJing采纳,获得10
1分钟前
汉堡包应助风趣翠霜采纳,获得10
1分钟前
沐兮完成签到 ,获得积分10
1分钟前
妄想天使发布了新的文献求助10
1分钟前
1分钟前
1分钟前
JamesPei应助从容未来采纳,获得10
1分钟前
整齐的飞兰完成签到 ,获得积分10
1分钟前
小胖完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
cccccc发布了新的文献求助10
1分钟前
小黄不熬夜完成签到 ,获得积分10
1分钟前
莉莉斯完成签到 ,获得积分10
2分钟前
TiAmo完成签到 ,获得积分10
2分钟前
cccccc完成签到,获得积分10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5376334
求助须知:如何正确求助?哪些是违规求助? 4501440
关于积分的说明 14013025
捐赠科研通 4409203
什么是DOI,文献DOI怎么找? 2422108
邀请新用户注册赠送积分活动 1414895
关于科研通互助平台的介绍 1391758