Bidirectional image denoising with blurred image feature

人工智能 计算机视觉 图像(数学) 特征(语言学) 特征检测(计算机视觉) 图像去噪 计算机科学 模式识别(心理学) 降噪 图像处理 语言学 哲学
作者
Linwei Fan,Xiaoyu Yan,Huiyu Li,Yongxia Zhang,Hui Liu,Caiming Zhang
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:153: 110563-110563
标识
DOI:10.1016/j.patcog.2024.110563
摘要

Image denoising remains a classical yet still challenging problem, because the noise can destroy details and cause severe information loss. In recent years, various well-designed CNN-based methods have been extensively applied in image denoising because of the strong learning ability. However, most of them share an unidirectional procedure, which directly learns a mapping from noisy input to a clean image without focusing on the over-smoothed state of the denoising process, limiting the richness of extracted features. Different from previous works, we propose a blurred image feature guided CNN (BFCNN) network that implements a novel blurring-adjusting strategy to address the complex denoising problem via two stages. In stage 1, we build a blurring module (BM) to capture over-smoothed features from noisy observations and generate the blurred image restoration, which is a less informative version of the clean image. Furthermore, a multi-level concatenating module (CM) and an adjusting module (AM) are then designed to recover more detailed information in stage 2. These two modules are jointly designed to restore a properly-smoothed image from the over-smoothed blurred image and the given under-smoothed noisy image. Comparing to the traditional denoising process, the proposed blurring-adjusting strategy produces a precise denoised image more efficiently by converting the unidirectional denoising process into a bidirectional denoising process. To our knowledge, this is the first study that utilizes the over-smoothed image to address the denoising problem. Extensive experiments demonstrate the superiority of our BFCNN with more accurate reconstruction quality and achieve competitive quantitative results among current CNN-based methods. This research will release the code upon acceptance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
刚刚
小郭呀完成签到,获得积分10
1秒前
bb发布了新的文献求助30
1秒前
Sheldon应助机灵的幼菱采纳,获得30
2秒前
乐乐应助zhuzhuzhu采纳,获得10
2秒前
wanci应助乐观的书易采纳,获得10
3秒前
一一发布了新的文献求助10
4秒前
FashionBoy应助lcs24201002032采纳,获得10
4秒前
科研通AI2S应助南曦采纳,获得10
4秒前
永刚完成签到,获得积分10
5秒前
kk完成签到,获得积分10
5秒前
tiansun完成签到,获得积分20
7秒前
少冰雪发布了新的文献求助10
7秒前
脑洞疼应助YY采纳,获得10
7秒前
背后的元槐完成签到,获得积分20
7秒前
Evooolet完成签到,获得积分10
8秒前
尽快毕业完成签到 ,获得积分10
9秒前
9秒前
科研通AI5应助cat采纳,获得10
10秒前
11秒前
斯人如机发布了新的文献求助10
12秒前
浮游应助臭弟弟你别摆了采纳,获得10
13秒前
年轻星星关注了科研通微信公众号
13秒前
14秒前
Evooolet发布了新的文献求助10
14秒前
15秒前
科研通AI6应助echo1.2采纳,获得10
15秒前
17秒前
孤独雪碧发布了新的文献求助10
18秒前
上官若男应助科研通管家采纳,获得10
18秒前
18秒前
万能图书馆应助爱喝水采纳,获得10
18秒前
科研通AI5应助科研通管家采纳,获得10
18秒前
Dean应助科研通管家采纳,获得150
18秒前
昏睡的蟠桃应助科研通管家采纳,获得150
18秒前
田様应助科研通管家采纳,获得10
18秒前
打打应助科研通管家采纳,获得10
19秒前
19秒前
今后应助科研通管家采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5062030
求助须知:如何正确求助?哪些是违规求助? 4285935
关于积分的说明 13355964
捐赠科研通 4103820
什么是DOI,文献DOI怎么找? 2246990
邀请新用户注册赠送积分活动 1252642
关于科研通互助平台的介绍 1183592