Bidirectional image denoising with blurred image feature

人工智能 计算机视觉 图像(数学) 特征(语言学) 特征检测(计算机视觉) 图像去噪 计算机科学 模式识别(心理学) 降噪 图像处理 哲学 语言学
作者
Linwei Fan,Xiaoyu Yan,Huiyu Li,Yongxia Zhang,Hui Liu,Caiming Zhang
出处
期刊:Pattern Recognition [Elsevier]
卷期号:153: 110563-110563
标识
DOI:10.1016/j.patcog.2024.110563
摘要

Image denoising remains a classical yet still challenging problem, because the noise can destroy details and cause severe information loss. In recent years, various well-designed CNN-based methods have been extensively applied in image denoising because of the strong learning ability. However, most of them share an unidirectional procedure, which directly learns a mapping from noisy input to a clean image without focusing on the over-smoothed state of the denoising process, limiting the richness of extracted features. Different from previous works, we propose a blurred image feature guided CNN (BFCNN) network that implements a novel blurring-adjusting strategy to address the complex denoising problem via two stages. In stage 1, we build a blurring module (BM) to capture over-smoothed features from noisy observations and generate the blurred image restoration, which is a less informative version of the clean image. Furthermore, a multi-level concatenating module (CM) and an adjusting module (AM) are then designed to recover more detailed information in stage 2. These two modules are jointly designed to restore a properly-smoothed image from the over-smoothed blurred image and the given under-smoothed noisy image. Comparing to the traditional denoising process, the proposed blurring-adjusting strategy produces a precise denoised image more efficiently by converting the unidirectional denoising process into a bidirectional denoising process. To our knowledge, this is the first study that utilizes the over-smoothed image to address the denoising problem. Extensive experiments demonstrate the superiority of our BFCNN with more accurate reconstruction quality and achieve competitive quantitative results among current CNN-based methods. This research will release the code upon acceptance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zsx发布了新的文献求助10
1秒前
3秒前
曾经晓亦发布了新的文献求助10
5秒前
文杰完成签到,获得积分20
5秒前
萧寒发布了新的文献求助10
8秒前
zsx完成签到,获得积分20
9秒前
15秒前
妮妮完成签到 ,获得积分10
15秒前
keikeizi完成签到,获得积分10
15秒前
今后应助Bismarck采纳,获得10
16秒前
16秒前
biocreater完成签到,获得积分10
18秒前
19秒前
20秒前
流浪小诗人完成签到,获得积分10
20秒前
DocZhao完成签到 ,获得积分10
22秒前
大头完成签到 ,获得积分10
22秒前
23秒前
Duolalala完成签到,获得积分20
23秒前
24秒前
霍霍完成签到,获得积分10
25秒前
Allen发布了新的文献求助10
26秒前
小眼儿发布了新的文献求助10
28秒前
gxudmy完成签到 ,获得积分10
28秒前
29秒前
Hello应助heavens采纳,获得10
30秒前
31秒前
31秒前
不配.应助Bismarck采纳,获得10
32秒前
32秒前
不配.应助故意的梦之采纳,获得20
32秒前
33秒前
欣喜落雁发布了新的文献求助10
35秒前
35秒前
倔驴发布了新的文献求助10
35秒前
35秒前
sxy发布了新的文献求助10
36秒前
superfatcat完成签到,获得积分10
36秒前
王灿灿应助紫色风铃采纳,获得10
36秒前
huco发布了新的文献求助10
37秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140260
求助须知:如何正确求助?哪些是违规求助? 2791039
关于积分的说明 7797743
捐赠科研通 2447527
什么是DOI,文献DOI怎么找? 1301942
科研通“疑难数据库(出版商)”最低求助积分说明 626345
版权声明 601194