Bidirectional image denoising with blurred image feature

人工智能 计算机视觉 图像(数学) 特征(语言学) 特征检测(计算机视觉) 图像去噪 计算机科学 模式识别(心理学) 降噪 图像处理 语言学 哲学
作者
Linwei Fan,Xiaoyu Yan,Huiyu Li,Yongxia Zhang,Hui Liu,Caiming Zhang
出处
期刊:Pattern Recognition [Elsevier]
卷期号:153: 110563-110563
标识
DOI:10.1016/j.patcog.2024.110563
摘要

Image denoising remains a classical yet still challenging problem, because the noise can destroy details and cause severe information loss. In recent years, various well-designed CNN-based methods have been extensively applied in image denoising because of the strong learning ability. However, most of them share an unidirectional procedure, which directly learns a mapping from noisy input to a clean image without focusing on the over-smoothed state of the denoising process, limiting the richness of extracted features. Different from previous works, we propose a blurred image feature guided CNN (BFCNN) network that implements a novel blurring-adjusting strategy to address the complex denoising problem via two stages. In stage 1, we build a blurring module (BM) to capture over-smoothed features from noisy observations and generate the blurred image restoration, which is a less informative version of the clean image. Furthermore, a multi-level concatenating module (CM) and an adjusting module (AM) are then designed to recover more detailed information in stage 2. These two modules are jointly designed to restore a properly-smoothed image from the over-smoothed blurred image and the given under-smoothed noisy image. Comparing to the traditional denoising process, the proposed blurring-adjusting strategy produces a precise denoised image more efficiently by converting the unidirectional denoising process into a bidirectional denoising process. To our knowledge, this is the first study that utilizes the over-smoothed image to address the denoising problem. Extensive experiments demonstrate the superiority of our BFCNN with more accurate reconstruction quality and achieve competitive quantitative results among current CNN-based methods. This research will release the code upon acceptance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yfe完成签到 ,获得积分10
刚刚
wu完成签到,获得积分10
刚刚
小晓小晓发布了新的文献求助20
刚刚
ZZZ完成签到,获得积分10
1秒前
Rain1god完成签到,获得积分10
1秒前
科研通AI2S应助小美美采纳,获得10
1秒前
Fngz3完成签到,获得积分20
2秒前
东西南北完成签到,获得积分10
2秒前
沙力VAN发布了新的文献求助10
2秒前
鹿梦发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
科研通AI6应助桐心心328采纳,获得30
3秒前
DT完成签到 ,获得积分10
3秒前
苏紫梗桔完成签到,获得积分10
4秒前
4秒前
wanci应助成就的醉香采纳,获得10
4秒前
zwj发布了新的文献求助10
4秒前
学海无涯完成签到,获得积分10
4秒前
robin_1217完成签到,获得积分10
4秒前
Leon Lai完成签到,获得积分0
4秒前
善学以致用应助Oasis采纳,获得10
4秒前
S先生完成签到,获得积分10
5秒前
顾矜应助qwer采纳,获得10
5秒前
科研之路完成签到,获得积分10
5秒前
铁臂阿童木完成签到,获得积分10
6秒前
6秒前
左耳钉应助春风细雨采纳,获得10
7秒前
Owen应助美少女战士采纳,获得10
7秒前
汉堡包应助LDoll采纳,获得30
9秒前
ACMI发布了新的文献求助10
9秒前
9秒前
9秒前
bingsu108完成签到,获得积分10
9秒前
大萝贝完成签到,获得积分10
9秒前
chem发布了新的文献求助10
10秒前
沙力VAN完成签到,获得积分10
10秒前
LWFFFF发布了新的文献求助10
10秒前
10秒前
usokb完成签到,获得积分10
11秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5433116
求助须知:如何正确求助?哪些是违规求助? 4545620
关于积分的说明 14197160
捐赠科研通 4465227
什么是DOI,文献DOI怎么找? 2447494
邀请新用户注册赠送积分活动 1438664
关于科研通互助平台的介绍 1415645