Bidirectional image denoising with blurred image feature

人工智能 计算机视觉 图像(数学) 特征(语言学) 特征检测(计算机视觉) 图像去噪 计算机科学 模式识别(心理学) 降噪 图像处理 哲学 语言学
作者
Linwei Fan,Xiaoyu Yan,Huiyu Li,Yongxia Zhang,Hui Liu,Caiming Zhang
出处
期刊:Pattern Recognition [Elsevier]
卷期号:153: 110563-110563
标识
DOI:10.1016/j.patcog.2024.110563
摘要

Image denoising remains a classical yet still challenging problem, because the noise can destroy details and cause severe information loss. In recent years, various well-designed CNN-based methods have been extensively applied in image denoising because of the strong learning ability. However, most of them share an unidirectional procedure, which directly learns a mapping from noisy input to a clean image without focusing on the over-smoothed state of the denoising process, limiting the richness of extracted features. Different from previous works, we propose a blurred image feature guided CNN (BFCNN) network that implements a novel blurring-adjusting strategy to address the complex denoising problem via two stages. In stage 1, we build a blurring module (BM) to capture over-smoothed features from noisy observations and generate the blurred image restoration, which is a less informative version of the clean image. Furthermore, a multi-level concatenating module (CM) and an adjusting module (AM) are then designed to recover more detailed information in stage 2. These two modules are jointly designed to restore a properly-smoothed image from the over-smoothed blurred image and the given under-smoothed noisy image. Comparing to the traditional denoising process, the proposed blurring-adjusting strategy produces a precise denoised image more efficiently by converting the unidirectional denoising process into a bidirectional denoising process. To our knowledge, this is the first study that utilizes the over-smoothed image to address the denoising problem. Extensive experiments demonstrate the superiority of our BFCNN with more accurate reconstruction quality and achieve competitive quantitative results among current CNN-based methods. This research will release the code upon acceptance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
舒心初晴完成签到,获得积分10
1秒前
CodeCraft应助犹豫的踏歌采纳,获得10
3秒前
尊敬的寄松完成签到,获得积分10
3秒前
4秒前
kyle发布了新的文献求助40
5秒前
5秒前
endlessloop发布了新的文献求助10
5秒前
善学以致用应助奥利奥采纳,获得50
6秒前
吴雨茜完成签到 ,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
一直很安静完成签到,获得积分10
7秒前
8秒前
科研完成签到,获得积分10
9秒前
zqingqing发布了新的文献求助10
9秒前
GPTea完成签到,获得积分0
9秒前
lbj发布了新的文献求助30
10秒前
10秒前
endlessloop完成签到,获得积分20
11秒前
Yulb发布了新的文献求助10
13秒前
爆米花应助闫素肃采纳,获得10
13秒前
tsuki完成签到 ,获得积分10
14秒前
李俊枫发布了新的文献求助30
14秒前
14秒前
14秒前
xyx发布了新的文献求助10
15秒前
lightman完成签到,获得积分10
15秒前
15秒前
光亮的秋白完成签到 ,获得积分10
16秒前
Dreamable完成签到,获得积分10
16秒前
外向烤鸡完成签到,获得积分10
17秒前
18秒前
18秒前
远志发布了新的文献求助10
19秒前
脑洞疼应助Dreamable采纳,获得10
20秒前
20秒前
21秒前
21秒前
科研通AI6应助科研通管家采纳,获得10
22秒前
吼吼应助科研通管家采纳,获得10
22秒前
桐桐应助科研通管家采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5680124
求助须知:如何正确求助?哪些是违规求助? 4996372
关于积分的说明 15171821
捐赠科研通 4839954
什么是DOI,文献DOI怎么找? 2593739
邀请新用户注册赠送积分活动 1546730
关于科研通互助平台的介绍 1504779