Bidirectional image denoising with blurred image feature

人工智能 计算机视觉 图像(数学) 特征(语言学) 特征检测(计算机视觉) 图像去噪 计算机科学 模式识别(心理学) 降噪 图像处理 哲学 语言学
作者
Linwei Fan,Xiaoyu Yan,Huiyu Li,Yongxia Zhang,Hui Liu,Caiming Zhang
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:153: 110563-110563
标识
DOI:10.1016/j.patcog.2024.110563
摘要

Image denoising remains a classical yet still challenging problem, because the noise can destroy details and cause severe information loss. In recent years, various well-designed CNN-based methods have been extensively applied in image denoising because of the strong learning ability. However, most of them share an unidirectional procedure, which directly learns a mapping from noisy input to a clean image without focusing on the over-smoothed state of the denoising process, limiting the richness of extracted features. Different from previous works, we propose a blurred image feature guided CNN (BFCNN) network that implements a novel blurring-adjusting strategy to address the complex denoising problem via two stages. In stage 1, we build a blurring module (BM) to capture over-smoothed features from noisy observations and generate the blurred image restoration, which is a less informative version of the clean image. Furthermore, a multi-level concatenating module (CM) and an adjusting module (AM) are then designed to recover more detailed information in stage 2. These two modules are jointly designed to restore a properly-smoothed image from the over-smoothed blurred image and the given under-smoothed noisy image. Comparing to the traditional denoising process, the proposed blurring-adjusting strategy produces a precise denoised image more efficiently by converting the unidirectional denoising process into a bidirectional denoising process. To our knowledge, this is the first study that utilizes the over-smoothed image to address the denoising problem. Extensive experiments demonstrate the superiority of our BFCNN with more accurate reconstruction quality and achieve competitive quantitative results among current CNN-based methods. This research will release the code upon acceptance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助马明芳采纳,获得10
刚刚
azuresky应助heyl采纳,获得30
1秒前
1秒前
香蕉觅云应助斯文明杰采纳,获得10
1秒前
2秒前
Cala洛~完成签到 ,获得积分10
2秒前
萌萌哒瓢酱完成签到,获得积分10
2秒前
Fury完成签到 ,获得积分10
5秒前
xiaoqi完成签到,获得积分10
5秒前
zfamjoy完成签到,获得积分10
5秒前
青阳完成签到,获得积分10
5秒前
liujiayi关注了科研通微信公众号
5秒前
Meyako应助新一袁采纳,获得10
5秒前
樱桃小贩完成签到,获得积分0
6秒前
Zll完成签到,获得积分10
6秒前
乐乐应助热爱科研的小孩采纳,获得10
6秒前
qqqqqqy发布了新的文献求助10
7秒前
芋圆完成签到,获得积分10
7秒前
漂南仰完成签到,获得积分10
7秒前
8秒前
8秒前
9秒前
wst1988完成签到,获得积分10
9秒前
忧伤的丹雪关注了科研通微信公众号
9秒前
9秒前
10秒前
huaiqiu关注了科研通微信公众号
10秒前
11秒前
黄营应助92小小白采纳,获得10
11秒前
zhou发布了新的文献求助10
11秒前
英俊的铭应助Young采纳,获得10
12秒前
森尼吖完成签到 ,获得积分10
12秒前
彭于晏应助verdugo采纳,获得10
12秒前
12秒前
13秒前
yuki完成签到,获得积分10
13秒前
13秒前
anna发布了新的文献求助10
14秒前
刘佳发布了新的文献求助10
14秒前
漂亮凌旋发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4633382
求助须知:如何正确求助?哪些是违规求助? 4029342
关于积分的说明 12467045
捐赠科研通 3715550
什么是DOI,文献DOI怎么找? 2050235
邀请新用户注册赠送积分活动 1081814
科研通“疑难数据库(出版商)”最低求助积分说明 964080