亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Bidirectional image denoising with blurred image feature

人工智能 计算机视觉 图像(数学) 特征(语言学) 特征检测(计算机视觉) 图像去噪 计算机科学 模式识别(心理学) 降噪 图像处理 语言学 哲学
作者
Linwei Fan,Xiaoyu Yan,Huiyu Li,Yongxia Zhang,Hui Liu,Caiming Zhang
出处
期刊:Pattern Recognition [Elsevier]
卷期号:153: 110563-110563
标识
DOI:10.1016/j.patcog.2024.110563
摘要

Image denoising remains a classical yet still challenging problem, because the noise can destroy details and cause severe information loss. In recent years, various well-designed CNN-based methods have been extensively applied in image denoising because of the strong learning ability. However, most of them share an unidirectional procedure, which directly learns a mapping from noisy input to a clean image without focusing on the over-smoothed state of the denoising process, limiting the richness of extracted features. Different from previous works, we propose a blurred image feature guided CNN (BFCNN) network that implements a novel blurring-adjusting strategy to address the complex denoising problem via two stages. In stage 1, we build a blurring module (BM) to capture over-smoothed features from noisy observations and generate the blurred image restoration, which is a less informative version of the clean image. Furthermore, a multi-level concatenating module (CM) and an adjusting module (AM) are then designed to recover more detailed information in stage 2. These two modules are jointly designed to restore a properly-smoothed image from the over-smoothed blurred image and the given under-smoothed noisy image. Comparing to the traditional denoising process, the proposed blurring-adjusting strategy produces a precise denoised image more efficiently by converting the unidirectional denoising process into a bidirectional denoising process. To our knowledge, this is the first study that utilizes the over-smoothed image to address the denoising problem. Extensive experiments demonstrate the superiority of our BFCNN with more accurate reconstruction quality and achieve competitive quantitative results among current CNN-based methods. This research will release the code upon acceptance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助炸鸡叔采纳,获得10
13秒前
14秒前
Orange应助丽优采纳,获得10
26秒前
drirshad发布了新的文献求助10
31秒前
浮游应助jane123采纳,获得30
38秒前
搜集达人应助丽优采纳,获得10
40秒前
44秒前
48秒前
顾矜应助丽优采纳,获得10
51秒前
55秒前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
小二郎应助丽优采纳,获得10
1分钟前
EDTA完成签到,获得积分10
1分钟前
1分钟前
1分钟前
彭于晏应助丽优采纳,获得10
1分钟前
1分钟前
3sigma发布了新的文献求助10
1分钟前
今后应助丽优采纳,获得10
1分钟前
zzgpku完成签到,获得积分0
1分钟前
传奇3应助丽优采纳,获得10
1分钟前
一杯茶具完成签到 ,获得积分10
1分钟前
深情安青应助丽优采纳,获得10
1分钟前
2分钟前
可爱的函函应助丽优采纳,获得10
2分钟前
丸子完成签到 ,获得积分10
2分钟前
yangzai完成签到 ,获得积分0
2分钟前
打打应助丽优采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
Efaith发布了新的文献求助10
3分钟前
可爱的函函应助丽优采纳,获得10
3分钟前
Owen应助炸鸡叔采纳,获得30
3分钟前
3分钟前
Ava应助丽优采纳,获得10
3分钟前
阔达白凡完成签到,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5426501
求助须知:如何正确求助?哪些是违规求助? 4540234
关于积分的说明 14171885
捐赠科研通 4458011
什么是DOI,文献DOI怎么找? 2444764
邀请新用户注册赠送积分活动 1435841
关于科研通互助平台的介绍 1413266