Bidirectional image denoising with blurred image feature

人工智能 计算机视觉 图像(数学) 特征(语言学) 特征检测(计算机视觉) 图像去噪 计算机科学 模式识别(心理学) 降噪 图像处理 语言学 哲学
作者
Linwei Fan,Xiaoyu Yan,Huiyu Li,Yongxia Zhang,Hui Liu,Caiming Zhang
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:153: 110563-110563
标识
DOI:10.1016/j.patcog.2024.110563
摘要

Image denoising remains a classical yet still challenging problem, because the noise can destroy details and cause severe information loss. In recent years, various well-designed CNN-based methods have been extensively applied in image denoising because of the strong learning ability. However, most of them share an unidirectional procedure, which directly learns a mapping from noisy input to a clean image without focusing on the over-smoothed state of the denoising process, limiting the richness of extracted features. Different from previous works, we propose a blurred image feature guided CNN (BFCNN) network that implements a novel blurring-adjusting strategy to address the complex denoising problem via two stages. In stage 1, we build a blurring module (BM) to capture over-smoothed features from noisy observations and generate the blurred image restoration, which is a less informative version of the clean image. Furthermore, a multi-level concatenating module (CM) and an adjusting module (AM) are then designed to recover more detailed information in stage 2. These two modules are jointly designed to restore a properly-smoothed image from the over-smoothed blurred image and the given under-smoothed noisy image. Comparing to the traditional denoising process, the proposed blurring-adjusting strategy produces a precise denoised image more efficiently by converting the unidirectional denoising process into a bidirectional denoising process. To our knowledge, this is the first study that utilizes the over-smoothed image to address the denoising problem. Extensive experiments demonstrate the superiority of our BFCNN with more accurate reconstruction quality and achieve competitive quantitative results among current CNN-based methods. This research will release the code upon acceptance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
红星路吃饼子的派大星完成签到 ,获得积分10
刚刚
jia完成签到 ,获得积分10
3秒前
5秒前
彭于晏应助内向书白采纳,获得10
5秒前
情怀应助huxley1121采纳,获得10
6秒前
大模型应助咕噜坚果采纳,获得10
7秒前
照照完成签到,获得积分10
7秒前
bbihk完成签到,获得积分10
11秒前
15秒前
Clover完成签到 ,获得积分10
16秒前
顾矜应助zdd采纳,获得10
17秒前
20秒前
21秒前
潇洒的半梅完成签到,获得积分10
22秒前
深情夏彤发布了新的文献求助10
22秒前
23秒前
腿腿完成签到,获得积分10
24秒前
25秒前
25秒前
wys发布了新的文献求助10
26秒前
wbh发布了新的文献求助10
27秒前
29秒前
咕噜坚果发布了新的文献求助10
31秒前
31秒前
顺顺完成签到,获得积分10
31秒前
33秒前
快乐若颜发布了新的文献求助10
34秒前
ZT发布了新的文献求助10
35秒前
今后应助wbh采纳,获得10
36秒前
打打应助青云采纳,获得10
37秒前
扶桑发布了新的文献求助10
38秒前
胡子完成签到,获得积分10
38秒前
Jupiter发布了新的文献求助10
38秒前
joejo1124发布了新的文献求助30
49秒前
认真的傲柏完成签到,获得积分10
50秒前
无花果应助留白留白采纳,获得10
51秒前
钱俊完成签到,获得积分10
55秒前
华仔应助无奈睫毛膏采纳,获得30
56秒前
科研通AI2S应助李李李采纳,获得10
58秒前
小蘑菇应助700w采纳,获得30
59秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993151
求助须知:如何正确求助?哪些是违规求助? 3534027
关于积分的说明 11264447
捐赠科研通 3273745
什么是DOI,文献DOI怎么找? 1806151
邀请新用户注册赠送积分活动 883016
科研通“疑难数据库(出版商)”最低求助积分说明 809652